ZCMU 1315: 孙子算经

Description

      《孙子算经》中的题目:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?

《孙子算经》中的解法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。

         解法中的三个关键数702115,有何妙用,有何性质呢?首先703除余157都除得尽的数,所以70a3除余a,而57都除得尽的数,215除余1,而37都除得尽的数,所以21b5除余b,而37除得尽的数。同理,15c7除余c35除得尽的数,总加起来 70a+21b+15c 3除余a5除余7除余c的数,也就是可能答案之一,但可能不是最小的,这数加减105105=3×5×7)仍有这样性质,可以多次减去105而得到最小的正数解。

    现在给定4个互不相等的被除数数A,B,C,D(0<A,B,C,D<50)4个余数a,b,c,d(0<a<A,0<b<B,0<c<C,0<d<D),求最小的正除数,题目保证有正解。

Input

有多组数据,每组数据有4个被除数A,B,C,D4个余数a,b,c,d

Output

输出相应的答案,占一行。

Sample Input

2 3 5 7 1 2 3 4 29 31 37 43 13 14 15 16

Sample Output

53 600081
#include<stdio.h>
int main()
{
	int A,B,C,D,a,b,c,d,i,sum;
	while(~scanf("%d%d%d%d%d%d%d%d",&A,&B,&C,&D,&a,&b,&c,&d)){
		i=1;
		while(1){
			sum=A*i+a;
			if((sum-b)%B==0&&(sum-c)%C==0&&(sum-d)%D==0) break;
			i++;
		}
		printf("%d\n",sum);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值