Description
《孙子算经》中的题目:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?
《孙子算经》中的解法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。
解法中的三个关键数70,21,15,有何妙用,有何性质呢?首先70是3除余1而5与7都除得尽的数,所以70a是3除余a,而5与7都除得尽的数,21是5除余1,而3与7都除得尽的数,所以21b是5除余b,而3与7除得尽的数。同理,15c是7除余c,3与5除得尽的数,总加起来 70a+21b+15c 是3除余a,5除余b ,7除余c的数,也就是可能答案之一,但可能不是最小的,这数加减105(105=3×5×7)仍有这样性质,可以多次减去105而得到最小的正数解。
现在给定4个互不相等的被除数数A,B,C,D(0<A,B,C,D<50)和4个余数a,b,c,d(0<a<A,0<b<B,0<c<C,0<d<D),求最小的正除数,题目保证有正解。
Input
有多组数据,每组数据有4个被除数A,B,C,D和4个余数a,b,c,d。
Output
输出相应的答案,占一行。
Sample Input
2 3 5 7 1 2 3 4 29 31 37 43 13 14 15 16
Sample Output
53 600081
#include<stdio.h>
int main()
{
int A,B,C,D,a,b,c,d,i,sum;
while(~scanf("%d%d%d%d%d%d%d%d",&A,&B,&C,&D,&a,&b,&c,&d)){
i=1;
while(1){
sum=A*i+a;
if((sum-b)%B==0&&(sum-c)%C==0&&(sum-d)%D==0) break;
i++;
}
printf("%d\n",sum);
}
return 0;
}