💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、引言
随着无人机技术的快速发展,其在医疗领域中的应用越来越广泛。无人机能够快速、便捷地将急救药物、医疗器械等送到偏远地区或交通不便的场所,为患者提供及时的救治。然而,在实际应用中,无人机递送过程会受到天气、风力、障碍物等不确定因素的影响,从而导致递送时间延误,甚至出现状态约束违反的情况,如电池电量不足、飞行高度过低等。因此,需要开发一种能够有效应对随机因素,并保证递送时间和状态约束满足要求的路径规划和控制方法。
二、模型建立
-
飞行动力学模型:
- 假设无人机在水平面上飞行,其动力学模型可描述为:ẋ=vcos(θ),ẏ=vsin(θ),v̇=(u-D)/m,θ̇=ω。
- 其中,x、y分别为无人机在水平面上的坐标,v为速度,θ为航向角,u为推力,D为阻力,m为质量,ω为角速度。
-
随机干扰模型:
- 考虑风力、气流等随机因素的影响,将无人机的速度和航向角添加随机干扰项:v=v0+wv,θ=θ0+wθ。
- 其中,v0和θ0分别为无人机速度和航向角的期望值,wv和wθ分别为速度和航向角的随机干扰项,假设它们服从正态分布。
-
状态约束:
- 无人机在飞行过程中需要满足一系列状态约束,例如飞行高度、电池电量、最大速度等。
- 将状态约束定义为:g(x(t))≤0。其中,x(t)为无人机在时刻t的状态向量,g(·)为状态约束函数。
三、随机预测控制
-
问题描述:
- 考虑无人机在随机环境下进行医疗产品递送,目标是在满足时间约束和状态约束的情况下,最小化状态约束违反概率。
-
控制策略:
- 采用基于模型预测控制(MPC)的方法,通过预测未来一段时间内的系统状态,并根据目标函数和约束条件,计算出最优的控制输入序列,从而实现对无人机轨迹的控制。
- 为了应对随机因素,引入随机预测控制,即在预测过程中考虑随机干扰的影响,并使用概率约束代替传统的确定性约束。
-
优化问题:
- 将上述问题转化为一个优化问题,目标函数为状态约束违反概率,约束条件为时间约束和状态约束:minP(g(x(t))>0),s.t. tf≤T,g(x(t))≤0。
四、MATLAB代码实现
以下是用MATLAB代码实现随机预测控制的示例代码:
matlab复制代码
u = 0; % 循环控制 | |
for t = 1:N % 预测系统状态 | |
x_pred = zeros(2,N); | |
x_pred(:,1) = x; | |
for i = 2:N | |
% 加入随机干扰 | |
v = v0 + randn()*wv; | |
θ = θ0 + randn()*wθ; | |
% 计算系统状态 | |
x_pred(:,i) = x_pred(:,i-1) + dt*[v*cos(θ); v*sin(θ)]; | |
end | |
% 计算状态约束违反概率 | |
violation_prob = sum(g(x_pred) > 0)/N; | |
% 优化控制输入 | |
u = fmincon(@(u) violation_prob, u, [], [], [], [], [], []); | |
% 更新系统状态 | |
x = x + dt*[v0*cos(θ0); v0*sin(θ0)]; | |
% 检查时间约束 | |
if t*dt > T | |
break; | |
end | |
end | |
% 打印结果 | |
disp('状态约束违反概率:'); | |
disp(violation_prob); |
五、仿真结果分析
通过MATLAB代码仿真,可以得到无人机在随机环境下飞行时,状态约束违反概率的变化情况。结果表明,该随机预测控制方法能够有效地降低状态约束违反概率,并保证无人机在时间约束内完成递送任务。
六、结论
本文提出了一种基于随机预测控制的无人机路径规划和控制方法,能够有效地解决医疗产品无人机递送过程中存在的随机性和时间紧迫性问题。通过引入时间联合状态约束违反概率指标,并结合MATLAB编程,实现了对无人机递送过程的优化。仿真结果表明,该方法能够降低状态约束违反概率,并保证无人机在时间约束内完成递送任务。未来将进一步研究更加复杂的随机环境模型,并开发更加智能化的控制算法,为无人机在医疗领域的应用提供更强大的技术支持。
📚2 运行结果




部分代码:
% Figure 1.2
tick_names_action = cell(nu, 1);
for u = 1:nu
if u <= max_D
tick_names_action{u} = strcat('d=', num2str(u));
else
if ~isempty(data_name{u-max_D})
tick_names_action{u} = strcat(['fly to: ', num2str(u-max_D), '(', data_name{u-max_D}, ')']);
else
tick_names_action{u} = strcat(['fly to: ', num2str(u-max_D)]);
end
end
end
subplot(3,1,2)
plot(time, data_u)
set(gca,'ytick',[1:nu],'yticklabel',tick_names_action)
title('Action')
grid on
xlim([0, length(time)-1])
ylim([0.5, nu+0.5])
%xlabel('time step')
% Figure 1.3
subplot(3,1,3)
plot(time, data_violation_chance)
title('Time-Joint Constraint Violation Probability')
hold on
yline(1, 'r--')
yline(0, 'b--')
grid on
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、数据下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取


被折叠的 条评论
为什么被折叠?



