文章目录
💯前言
- 本次分析的题目是关于质因数分解的。题目要求我们通过数学和编程技巧,在已知整数 n n n 的前提下找到两个质因数中较大的那个。经过分析与尝试,我们对本题进行了深入剖析,不仅学习了老师的实现方法,还对自己的方法进行了调整和优化,最终得出了准确的解法。
以下内容详细记录了题目的解决过程,包括理解问题、自己代码的探索和错误排查、与老师代码的对比、以及从中学习到的知识点。
C++ 参考手册
💯 题目描述:质因数分解
已知正整数 n n n 是两个不同的质数的乘积,试求出较大的那个质数。
输入格式
输入只有一行,包含一个正整数 n n n( 6 < n < 1 0 9 6 < n < 10^9 6<n<109)。
输出格式
输出只有一行,包含一个正整数 p p p,即较大的那个质数。
输入输出样例:
输入:
21
输出:
7
💯 问题解析
要解答本题,首先需要理解题目中的关键概念:
1. 质数的定义
质数是一个大于 1 的正整数,且除了 1 和自身之外,不可被其他数整除。例如,2、3、5、7 是质数,而 4、6、9 不是质数。
2. 题目特点
根据题意,输入的 n n n 是两个不同质数的乘积:
n = m 1 × m 2 n = m_1 \times m_2 n=m1×m2
其中 m 1 m_1 m1 和 m 2 m_2 m2 都是质数,且 m 1 ≠ m 2 m_1 \neq m_2 m1=m2。需要输出较大的质数 m 2 m_2 m2。
3. 约束范围
6 < n < 1 0 9 6 < n < 10^9 6<n<10