日中机器翻译模型---NLP实践

一、简介

        随着深度学习技术的持续发展,神经机器翻译已经成为自然语言处理领域的重要研究方向。在众多的神经机器翻译模型中,基于Transformer的模型因其出色的性能和广泛的应用前景而备受关注。本文将重点介绍如何使用Python和PyTorch实现基于Transformer的机器翻译。

二、数据准备 

1.语料库

        在实现基于Transformer的神经机器翻译之前,需要进行数据准备工作。这包括数据集的下载、预处理和分词等步骤。在本文中,我们将使用从JParaCrawl下载的日语-英语并行数据集。该数据集被描述为由NTT创建的最大的公开可用的英语-日语并行语料库,主要通过网络抓取和自动句对齐创建。

import math
import torchtext
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from collections import Counter
from torchtext.vocab import Vocab
from torch.nn import TransformerEncoder, TransformerDecoder, TransformerEncoderLayer, TransformerDecoderLayer
import io
import time
import pandas as pd
import numpy as np
import pickle
import tqdm
import sentencepiece as spm
torch.manual_seed(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#print(torch.cuda.get_device_name(0)) 

df = pd.read_csv('zh-ja.bicleaner05.txt', sep='\\t', engine='python', header=None)
trainen = df[2].values.tolist()#[:10000]
trainja = df[3].values.tolist()#[:10000]
# trainen.pop(5972)
# trainja.pop(5972)

print(trainen[500])
print(trainja[500])

代码运行结果: 

 输出语料库中索引500的元素

2.分词器 

        与英语或其他按字母顺序排列的语言不同,日语句子不包含空格来分隔单词。我们可以使用JParaCrawl提供的标记器,它是使用sentencepece为日语和英语创建的,能够为日语和英语文本生成合适的分词单元。

en_tokenizer = spm.SentencePieceProcessor(model_file='enja_spm_models/spm.en.nopretok.model')
ja_tokenizer = spm.SentencePieceProcessor(model_file='enja_spm_models/spm.ja.nopretok.model')

en_tokenizer.encode("All residents aged 20 to 59 years who live in Japan must enroll in public pension system.", out_type='str')

ja_tokenizer.encode("年金 日本に住んでいる20歳~60歳の全ての人は、公的年金制度に加入しなければなりません。", out_type='str')

代码运行结果: 

 

3.建立TorchText词汇对象 

        使用标记器和原始句子,然后构建一个从TorchText导入的Vocab对象。根据数据集的大小和计算能力,这个过程可能需要几秒钟或几分钟的时间。不同的标记器也会影响构建词汇表所需的时间。一旦我们获得了词汇表对象,我们可以利用它和标记器对象来为训练数据创建张量。 

def build_vocab(sentences, tokenizer):#使用给定的tokenizer从句子列表中构建词汇表。
  counter = Counter()
  for sentence in sentences:
    counter.update(tokenizer.encode(sentence, out_type=str))
  return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>']) # 构建日语和英语的词汇表
ja_vocab = build_vocab(trainja, ja_tokenizer)
en_vocab = build_vocab(trainen, en_tokenizer)

def data_process(ja, en):
  data = []
  for (raw_ja, raw_en) in zip(ja, en):
    ja_tensor_ = torch.tensor([ja_vocab[token] for token in ja_tokenizer.encode(raw_ja.rstrip("\n"), out_type=str)],
                            dtype=torch.long) # 将日语句子转换为张量
    en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer.encode(raw_en.rstrip("\n"), out_type=str)],
                            dtype=torch.long) # 将英语句子转换为张量
    data.append((ja_tensor_, en_tensor_)) # 将处理后的日语和英语张量对添加到数据列表中
  return data
train_data = data_process(trainja, trainen) # 使用数据处理函数处理训练集数据

4.创建DataLoader对象 

        下面,我们定义如何生成训练批次数据,并使用这些数据创建了一个迭代器,以便在模型训练过程中使用。可以根据个人设备的内存容量,数据大小来随意更改批大小。

BATCH_SIZE = 8  # 批处理大小
PAD_IDX = ja_vocab['<pad>']  # 获取日语词汇表中的填充索引
BOS_IDX = ja_vocab['<bos>']  # 获取日语词汇表中的起始标记索引
EOS_IDX = ja_vocab['<eos>']  # 获取日语词汇表中的结束标记索引

def generate_batch(data_batch):
    ja_batch, en_batch = [], []
    for (ja_item, en_item) in data_batch:
        # 在日语句子张量的开头和结尾添加起始标记和结束标记
        ja_batch.append(torch.cat([torch.tensor([BOS_IDX]), ja_item, torch.tensor([EOS_IDX])], dim=0))
        # 在英语句子张量的开头和结尾添加起始标记和结束标记
        en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0))
    
    # 对日语句子张量和英语句子张量进行填充,使它们在批次中具有相同的长度
    ja_batch = pad_sequence(ja_batch, padding_value=PAD_IDX)
    en_batch = pad_sequence(en_batch, padding_value=PAD_IDX)
    
    return ja_batch, en_batch

# 使用 DataLoader 创建训练数据迭代器,每次生成一个批次数据
train_iter = DataLoader(train_data, batch_size=BATCH_SIZE,
                        shuffle=True, collate_fn=generate_batch)

三、Seq2Seq 模型

        Transformer是一种Seq2Seq模型,最初在“Attention is all you need”论文中提出,用于解决机器翻译任务。Transformer模型由编码器和解码器块组成,每个块包含固定数量的层。

        编码器通过一系列的多头注意力和前馈网络层对输入序列进行处理。编码器的输出称为“记忆”,将其与目标张量一起馈送到解码器。编码器和解码器在训练时采用端到端的教师强制技术。

        下面,我们定义一个基于Transformer的序列到序列(Seq2Seq)模型,用于处理序列数据的翻译或转换任务。该模型由编码器(encoder)和解码器(decoder)组成,它们共享相同的维度和一些层的参数。

from torch.nn import (TransformerEncoder, TransformerDecoder,
                      TransformerEncoderLayer, TransformerDecoderLayer)


class Seq2SeqTransformer(nn.Module):
    def __init__(self, num_encoder_layers: int, num_decoder_layers: int,
                 emb_size: int, src_vocab_size: int, tgt_vocab_size: int,
                 dim_feedforward:int = 512, dropout:float = 0.1):  # 初始化编码器层和解码器层
        super(Seq2SeqTransformer, self).__init__()
        encoder_layer = TransformerEncoderLayer(d_model=emb_size, nhead=NHEAD,
                                                dim_feedforward=dim_feedforward)
        self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=num_encoder_layers)
        decoder_layer = TransformerDecoderLayer(d_model=emb_size, nhead=NHEAD,
                                                dim_feedforward=dim_feedforward)
        self.transformer_decoder = TransformerDecoder(decoder_layer, num_layers=num_decoder_layers)

        self.generator = nn.Linear(emb_size, tgt_vocab_size) # 线性层用于生成输出词汇
        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)  # 源语言和目标语言的词嵌入
        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
        self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout)

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor,
                tgt_mask: Tensor, src_padding_mask: Tensor,
                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):
        src_emb = self.positional_encoding(self.src_tok_emb(src)) # 对输入的源语言和目标语言进行位置编码
        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
        memory = self.transformer_encoder(src_emb, src_mask, src_padding_mask) # 编码阶段:通过编码器编码源语言序列
        outs = self.transformer_decoder(tgt_emb, memory, tgt_mask, None,
                                        tgt_padding_mask, memory_key_padding_mask)
        return self.generator(outs)# 通过线性层生成最终的输出词汇分布

    def encode(self, src: Tensor, src_mask: Tensor): 
        return self.transformer_encoder(self.positional_encoding(
                            self.src_tok_emb(src)), src_mask)

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
        return self.transformer_decoder(self.positional_encoding(
                          self.tgt_tok_emb(tgt)), memory,
                          tgt_mask)

class PositionalEncoding(nn.Module):
    def __init__(self, emb_size: int, dropout, maxlen: int = 5000):
        super(PositionalEncoding, self).__init__()
        den = torch.exp(- torch.arange(0, emb_size, 2) * math.log(10000) / emb_size)  # 计算正弦和余弦函数的参数
        pos = torch.arange(0, maxlen).reshape(maxlen, 1) # 创建位置编码矩阵
        pos_embedding = torch.zeros((maxlen, emb_size))
        pos_embedding[:, 0::2] = torch.sin(pos * den)
        pos_embedding[:, 1::2] = torch.cos(pos * den)
        pos_embedding = pos_embedding.unsqueeze(-2)

        self.dropout = nn.Dropout(dropout) # 初始化dropout层
        self.register_buffer('pos_embedding', pos_embedding)

    def forward(self, token_embedding: Tensor): # 在输入的token嵌入上应用位置编码并使用dropout
        return self.dropout(token_embedding +
                            self.pos_embedding[:token_embedding.size(0),:])

class TokenEmbedding(nn.Module):
    def __init__(self, vocab_size: int, emb_size):
        super(TokenEmbedding, self).__init__()
        self.embedding = nn.Embedding(vocab_size, emb_size)
        self.emb_size = emb_size
    def forward(self, tokens: Tensor):  # 返回通过词嵌入层的嵌入向量,并乘以sqrt(嵌入维度)进行缩放
        return self.embedding(tokens.long()) * math.sqrt(self.emb_size)

def generate_square_subsequent_mask(sz):
    mask = (torch.triu(torch.ones((sz, sz), device=device)) == 1).transpose(0, 1) # 创建一个上三角矩阵,其对角线及以下元素为1,其余为0
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) # 将mask转换为浮点型,并用-inf填充所有0元素,用0.0填充所有1元素
    return mask

def create_mask(src, tgt):
  src_seq_len = src.shape[0]
  tgt_seq_len = tgt.shape[0]

  tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
  src_mask = torch.zeros((src_seq_len, src_seq_len), device=device).type(torch.bool) # 创建一个全零的源序列mask,数据类型为bool类型

  src_padding_mask = (src == PAD_IDX).transpose(0, 1) # 创建源序列和目标序列的padding mask,PAD_IDX是指定的填充标识符
  tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
  return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask

SRC_VOCAB_SIZE = len(ja_vocab)
TGT_VOCAB_SIZE = len(en_vocab)
EMB_SIZE = 512
NHEAD = 8
FFN_HID_DIM = 512
BATCH_SIZE = 16
NUM_ENCODER_LAYERS = 3
NUM_DECODER_LAYERS = 3
NUM_EPOCHS = 16
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS,
                                 EMB_SIZE, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE,
                                 FFN_HID_DIM)

for p in transformer.parameters(): # 初始化Transformer模型中维度大于1的参数,采用Xavier均匀分布初始化方法
    if p.dim() > 1:
        nn.init.xavier_uniform_(p)

transformer = transformer.to(device)

loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX) # 定义交叉熵损失函数,忽略填充标识符PAD_IDX

optimizer = torch.optim.Adam(
    transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9
) # 定义Adam优化器,用于更新Transformer模型的参数
def train_epoch(model, train_iter, optimizer):  # 将模型设置为训练模式
  model.train()
  losses = 0
  for idx, (src, tgt) in  enumerate(train_iter):
      src = src.to(device)
      tgt = tgt.to(device)

      tgt_input = tgt[:-1, :]

      src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)

      logits = model(src, tgt_input, src_mask, tgt_mask,
                                src_padding_mask, tgt_padding_mask, src_padding_mask) # 前向传播,计算logits

      optimizer.zero_grad() # 梯度清零

      tgt_out = tgt[1:,:] # 获取目标序列的输出数据
      loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
      loss.backward()

      optimizer.step()
      losses += loss.item()
  return losses / len(train_iter)


def evaluate(model, val_iter):
  model.eval() # 将模型设置为评估模式
  losses = 0
  for idx, (src, tgt) in (enumerate(valid_iter)):
    src = src.to(device)
    tgt = tgt.to(device) # 去掉目标序列最后一个位置的数据作为输入

    tgt_input = tgt[:-1, :]

    src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)

    logits = model(src, tgt_input, src_mask, tgt_mask,
                              src_padding_mask, tgt_padding_mask, src_padding_mask) # 前向传播,计算logits
    tgt_out = tgt[1:,:]
    loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
    losses += loss.item() # 累计损失值
  return losses / len(val_iter)

        上面的代码基于Transformer的序列到序列模型,包括模型初始化、参数设定、设备分配、损失函数和优化器的定义,以及训练与评估过程的实现。
        在构建Seq2SeqTransformer模型时,首先定义了一系列关键的超参数。这些超参数包括源语言和目标语言的词汇表大小SRCVOCABSIZETGTVOCABSIZE,嵌入层的维度EMBSIZE,多头注意力机制的头数NHEAD,前馈网络隐藏层的维度FFNHIDDIM,批次大小BATCHSIZE,以及编码器和解码器的层数NUMENCODERLAYERS和NUMDECODERLAYERS,同时设置了训练轮数NUM_EPOCHS。接着,基于这些超参数配置,创建了Transformer模型的实例。为了确保训练过程中的梯度流动顺畅,所有模型参数都采用了Xavier均匀初始化方法。随后,模型被分配到特定的设备上,最好是GPU,以实现高效计算。
        在准备训练阶段,我们定义了交叉熵损失函数lossfn。特别地,该损失函数能够忽略填充索引PADIDX,以避免在计算损失时对填充部分进行惩罚。此外,还创建了Adam优化器optimizer,用于在模型训练过程中更新参数。
        训练过程由trainepoch函数实现。该函数将模型设置为训练模式,并循环遍历训练迭代器trainiter中的每个epoch。在每个批次处理中,源语言和目标语言的数据被送至设备,生成目标序列的相应输入(不包括序列的最后一个时间步),同时创建了模型所需的掩码。模型根据此生成预测输出logits,然后执行梯度清零、损失计算、反向传播和参数更新,最后返回该epoch的平均损失。
模型评估通过evaluate函数完成。在评估模式下,模型处理验证迭代器val_iter上的数据,计算损失,但不进行反向传播和参数更新。最终,我们得到验证集的平均损失,以评估模型的性能。

四、训练过程 

        最终,一旦我们准备好必要的类和函数,便可以开始模型训练。显然,训练所需的时间会因计算能力、模型参数和数据集大小等因素而有所不同。
 

for epoch in tqdm.tqdm(range(1,NUM_EPOCHS+1)):
    start_time=time.time()
    train_loss=train_epoch(transformer,train_iter,optimizer)
    end_time= time.time()
    print((f"Epoch:{epoch},Trainloss:{train_loss:.3f},"f"Epoch time={(end_time-start_time):.3f}s"))

五、模型调用

        在这部分,我们创建翻译新句子的函数,包括获取日语句子、标记化、转换为张量、推理,然后将结果解码回句子,但这次是英语。然后,我们可以调用翻译函数并传递所需的参数。

def greedy_decode(model, src, src_mask, max_len, start_symbol):
    src = src.to(device) # 将源序列和源序列mask移动到指定设备上(如GPU)
    src_mask = src_mask.to(device)
    memory = model.encode(src, src_mask)  # 使用编码器对源序列进行编码,得到记忆(memory)
    ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device) # 初始化目标序列,以起始符号填充
    for i in range(max_len-1):
        memory = memory.to(device) 
        memory_mask = torch.zeros(ys.shape[0], memory.shape[0]).to(device).type(torch.bool) # 创建目标序列的mask
        tgt_mask = (generate_square_subsequent_mask(ys.size(0))
                                    .type(torch.bool)).to(device)
        out = model.decode(ys, memory, tgt_mask)
        out = out.transpose(0, 1)
        prob = model.generator(out[:, -1]) # 通过生成器获取概率最大的下一个单词
        _, next_word = torch.max(prob, dim = 1)
        next_word = next_word.item()
        ys = torch.cat([ys,
                        torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
        if next_word == EOS_IDX: # 如果预测到终止符号,停止解码
          break
    return ys
def translate(model, src, src_vocab, tgt_vocab, src_tokenizer):
    model.eval()
    tokens = [BOS_IDX] + [src_vocab.stoi[tok] for tok in src_tokenizer.encode(src, out_type=str)]+ [EOS_IDX]
    num_tokens = len(tokens)
    src = (torch.LongTensor(tokens).reshape(num_tokens, 1) )
    src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
    tgt_tokens = greedy_decode(model,  src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten()
    return " ".join([tgt_vocab.itos[tok] for tok in tgt_tokens]).replace("<bos>", "").replace("<eos>", "")

translate(transformer, "HSコード 8515 はんだ付け用、ろう付け用又は溶接用の機器(電気式(電気加熱ガス式を含む。)", ja_vocab, en_vocab, ja_tokenizer)

六、保存训练好的模型 

        最后,在完成训练后,我们首先会使用Pickle保存Vocab对象(envocab和javocab)。此外,我们还可以利用PyTorch的保存和加载功能将模型保存以备将来使用。通常情况下,有两种保存模型的方法,具体取决于我们未来使用模型的目的。第一种方法仅用于推理阶段,我们可以随后加载模型并将其用于从日语翻译成英语。第二种方法同样适用于推理,但当我们希望稍后加载模型并恢复训练时,也同样有效。

import pickle
# 打开想要存储数据的文件
file = open('en_vocab.pkl', 'wb')
#将信息转储到该文件
pickle.dump(en_vocab, file)
file.close()
file = open('ja_vocab.pkl', 'wb')
pickle.dump(ja_vocab, file)
file.close()#关闭文件

# save model for inference
torch.save(transformer.state_dict(), 'inference_model')

# save model + checkpoint to resume training later
torch.save({
  'epoch': NUM_EPOCHS,
  'model_state_dict': transformer.state_dict(),
  'optimizer_state_dict': optimizer.state_dict(),
  'loss': train_loss,
  }, 'model_checkpoint.tar')# 使用torch.save函数将以下内容保存到'model_checkpoint.tar'文件中

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值