Matplotlib 可视化数据分析图表简单介绍

本文介绍了数据分析图表在数据处理中的重要性,详细讲解了Matplotlib在Python中的应用,从选择合适的图表类型、基本组成到颜色、线条和标记设置,以及实例演示如何创建和定制Matplotlib图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

一、前言

1.1 数据分析图表的作用

1.2 如何选择合适的图表类型

1.3 图表的基本组成

二、Matplotlib 简介

三、Matpoltlib 图表之初体验

3.1 创建 Matpoltlib 简单图表

3.2 基本绘图 plot()函数介绍

四、图表的常用设置

4.1 颜色设置

4.2 线条设置

4.3 标记样式

五、经验分享


CSDNicon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/134816784

一、前言

在数据分析与机器学习中,我们经常用到大量的可视化操作。一张精美的图表,不仅能够展示大量的信息,更能够直观地体现数据之间隐藏的关系。

下面分享的是 Maplotlib,每一个知识点都结合示例,力求通过可视化效果了解图表的相关功能,并且通过综合应用将图表应用于实际的数据统计分析工作中。

1.1 数据分析图表的作用

在我们进行数据处理及统计分析时,会遇到这样一个问题,一堆堆数字看起来不是很直观,而且在数据较多的情况下无法展示,不能很好地诠释统计分析结果。举个简单的例子如下面的两图所示。

上面举例同是“月销量分析”结果的呈现,你更青睐哪一种?显然,数据分析图表(右图)更加直观、生动和具体,它将复杂的统计数字变得简单化、通俗化、形象化,使人一目了然,便于理解和比较。数据分析图表直观地展示统计信息,使我们能够快速了解数据变化趋势、数据比较结果以及所占比例等,它对数据分析、数据挖掘起到了关键性的作用。

1.2 如何选择合适的图表类型

数据分析图表的类型包括条形图、柱状图、折线图、饼图、散点图、面积图、坏形图、雷达图等。此外,通过图表的相互登加还可以生成复合型图表。
不同类型的图表适用不同的场景,可以按使用目的选择合适的图表类型。下面通过一张框架图来说明,如图所示。

1.3 图表的基本组成

数据分析图表有很多种,但每一种图表的绝大组成部分是基本相同的,一张完整的图表一般包括画布、图表标题、绘图区、数据系列、坐标轴、坐标轴标题、图例、文本标签、网格线等,如下面的图所示。

下面详细介绍各个组成部分的功能。
(1) 画布:图中最大的白色区域,作为其他图表元素的容器。
(2)图表标题:用来概况图表内容的文字,常用的功能有设置字体、字号及字体颜色等。
(3)绘图区:画布中的一部分,即显示图形的矩形区域,可改变填充颜色、位置,以便图表展示更好的图形效果。


(4) 数据系列:在数据区域中,同一列(或同一行)数值数据的集合构成一组数据系列,也就是图表中相关数据点的集合。图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值