文章目录
CSDNhttps://mp.csdn.net/mp_blog/creation/editor/134816784
一、前言
在数据分析与机器学习中,我们经常用到大量的可视化操作。一张精美的图表,不仅能够展示大量的信息,更能够直观地体现数据之间隐藏的关系。
下面分享的是 Maplotlib,每一个知识点都结合示例,力求通过可视化效果了解图表的相关功能,并且通过综合应用将图表应用于实际的数据统计分析工作中。
1.1 数据分析图表的作用
在我们进行数据处理及统计分析时,会遇到这样一个问题,一堆堆数字看起来不是很直观,而且在数据较多的情况下无法展示,不能很好地诠释统计分析结果。举个简单的例子如下面的两图所示。
上面举例同是“月销量分析”结果的呈现,你更青睐哪一种?显然,数据分析图表(右图)更加直观、生动和具体,它将复杂的统计数字变得简单化、通俗化、形象化,使人一目了然,便于理解和比较。数据分析图表直观地展示统计信息,使我们能够快速了解数据变化趋势、数据比较结果以及所占比例等,它对数据分析、数据挖掘起到了关键性的作用。
1.2 如何选择合适的图表类型
数据分析图表的类型包括条形图、柱状图、折线图、饼图、散点图、面积图、坏形图、雷达图等。此外,通过图表的相互登加还可以生成复合型图表。
不同类型的图表适用不同的场景,可以按使用目的选择合适的图表类型。下面通过一张框架图来说明,如图所示。
1.3 图表的基本组成
数据分析图表有很多种,但每一种图表的绝大组成部分是基本相同的,一张完整的图表一般包括画布、图表标题、绘图区、数据系列、坐标轴、坐标轴标题、图例、文本标签、网格线等,如下面的图所示。
下面详细介绍各个组成部分的功能。
(1) 画布:图中最大的白色区域,作为其他图表元素的容器。
(2)图表标题:用来概况图表内容的文字,常用的功能有设置字体、字号及字体颜色等。
(3)绘图区:画布中的一部分,即显示图形的矩形区域,可改变填充颜色、位置,以便图表展示更好的图形效果。
(4) 数据系列:在数据区域中,同一列(或同一行)数值数据的集合构成一组数据系列,也就是图表中相关数据点的集合。图