大模型起源与发展-课程笔记

 注意力机制可视化出来的结果

 通过混淆矩阵来可视化注意力,越高亮表示相关度越高

 

 

q时输入的一些query  key是关键位置的key v是一些额外的输入 

self-attention 因为我们想要其理解语义 

 

其抛弃了rnn 所以就不用解决RNN的一些缺点

gpu可以并行处理,因为RNN是前后文依赖的所以不能并行运算,但是transformer前后没有依赖关系,所以可以并行运算(不用先学完一年级再去学二年级)

可以捕获句子级别的语义关系,理解了语义就能过更多的任务了

 1.BERT模型采用了预训练(Pre-training)加微调(Fine-tuning)的训练范式。 2.预训练使用大量无标签数据,微调使用少量有标签数据。 3.这种范式降低了数据标注的成本,提高了模型的泛化能力。

右图中的squad,ner,,uli是数据集,是根据不同的任务做微调

 

BERT模型的预训练方法

1.BERT模型的预训练过程:使用大量无标签文本进行训练。 2.预训练任务:完形填空,通过mask掉部分词汇来训练模型。 3.mask的数量和替换方式:15%的词汇被mask掉,其中80%替换为mask,10%替换为随机词汇,10%保持原样。

1.BERT模型是自编码的,不需要大量标注训练数据。 2.GPT是自回归的,适合生成类任务,但上下文理解能力较弱。 3.BERT模型更适合理解上下文,适用于信息提取、问答系统等任务。 

 首先在无监督学习进行一个预训练,然后 在有监督的情况下进行一个微调,做下游任务

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值