「新手向」超简单超详细!云端部署Stable Diffusion教程

        我们在本地部署时,很多人会遇到部署难、显卡算力不足、显存外溢、做图慢等问题,实在是心有余而力不足......但是没有关系,阿里云为我们提供了低代码、易上手、不吃本地配置且操作便捷的部署方案。废话不多说,直接开启我们的云端部署之旅!

第一步:登录/注册 (右上角)

登录/注册后须按照要求进行实名认证

阿里云官方网址:阿里云-计算,为了无法计算的价值

第二步:函数计算FC的开通 

鼠标移动至左上角功能栏--产品--函数计算FC


 

或者直接打开函数计算FC控制台地址:函数计算FC_无服务器计算_Serverless_容器与中间件-阿里云

打开之后点击管理工作台

        弹出主界面后,如果是第一次使用的用户可以点击左侧"领取使用套餐并开通" ,之后,你将会获得:价值180元的3个月试用包

        如果使用过了就点击右边

### 部署 Stable Diffusion 模型的方法 #### 本地环境部署 对于希望在个人计算机上运行Stable Diffusion模型的用户来说,可以按照如下方法操作: 文件准备方面,在下载所需资源后,应将模型重命名为`model.ckpt`并将其放置于特定位置,即`sd-webui/models/Stable-diffusion/`目录之下。例如,如果安装路径设定为`D:\stable-diffusion-webui\`,那么最终模型应当位于`D:\stable-diffusion-webui\models\Stable-diffusion\model.ckpt`[^1]。 除了基本的模型文件外,为了提升生成图像的质量,还可以考虑安装额外组件如GFPGAN用于人脸修复增强等功能。 #### 使用 Amazon SageMaker 平台部署 针对寻求云端解决方案的情况,利用亚马逊云科技提供的SageMaker服务能够实现快速简便地搭建起可用的服务端口。此过程不仅简化了基础设施管理的任务,而且允许开发者专注于应用程序逻辑本身而不必担心底层硬件配置等问题[^2]。 具体而言,由于Stable Diffusion是一种基于潜在扩散模型(Latent Diffusion Models)设计而成的文字转图片(text-to-image)工具,它内部包含了变分自动编码器(Variational Auto Encoder),U-Net架构以及文本编码机制三大部分;这些特性共同作用使得即使是在普通消费级显卡设备上也能高效完成高质量视觉内容创作工作。 ```bash # 假设已经完成了AWS CLI配置 aws sagemaker create-model \ --model-name my-stable-diffusion-model \ --primary-container Image=763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-inference:1.9.1-gpu-py38-ea1,ModelDataUrl=s3://path/to/model.tar.gz \ --execution-role arn:aws:iam::your-account-id:role/service-role/AmazonSageMaker-ExecutionRole-your-execution-role ``` 上述命令展示了如何创建一个新的机器学习模型实例,并指定了所使用的容器镜像地址及存储桶内的预训练权重链接等必要参数。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值