- 博客(3)
- 收藏
- 关注
原创 K近邻对鸢尾花数据集进行预测
print("最佳预估器:",estimator.best_estimator_)print("比对真实值和预测值:",y_test == y_predict)print("最佳参数:",estimator.best_params_)print("最佳结果:",estimator.best_score_)print("最佳索引:",estimator.best_index_)print("准确率为:",score)
2024-06-12 16:17:19 376
原创 决策树和随机森林对红酒数据集进行预测
创建随机森林算法(参数设置:有放回的抽取样本;print("支持向量机模型分类准确率:", accuracy_svm)print("随机森林模型分类准确率:", accuracy_rf)print("决策树模型分类准确率:", accuracy_dt)print("训练集特征形状:", X_train.shape)print("测试集特征形状:", X_test.shape)# 创建支持向量机算法(参数设置:径向基内核)并训练。# 使用训练好的模型预测测试集的标签。# 计算模型的分类准确率(模型得分)
2024-06-12 16:14:36 770
原创 K近邻算法
print("K近邻算法模型的分类准确率:", accuracy)print("训练集特征形状:", X_train.shape)print("测试集特征形状:", X_test.shape)# 使用测试集计算K近邻算法模型的分类准确率(模型得分)# 使用训练集训练选取的最优K值下的K近邻算法。print("最优K值:", best_k)# 使用网格搜索法验证最优K值(邻居数)# 使用K近邻算法模型预测测试集结果。# 检查训练集和测试集特征的形状。# 分割数据集为训练集和测试集。# 初始化K近邻算法。
2024-06-12 16:11:52 596
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人