自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 K近邻对鸢尾花数据集进行预测

print("最佳预估器:",estimator.best_estimator_)print("比对真实值和预测值:",y_test == y_predict)print("最佳参数:",estimator.best_params_)print("最佳结果:",estimator.best_score_)print("最佳索引:",estimator.best_index_)print("准确率为:",score)

2024-06-12 16:17:19 376

原创 决策树和随机森林对红酒数据集进行预测

创建随机森林算法(参数设置:有放回的抽取样本;print("支持向量机模型分类准确率:", accuracy_svm)print("随机森林模型分类准确率:", accuracy_rf)print("决策树模型分类准确率:", accuracy_dt)print("训练集特征形状:", X_train.shape)print("测试集特征形状:", X_test.shape)# 创建支持向量机算法(参数设置:径向基内核)并训练。# 使用训练好的模型预测测试集的标签。# 计算模型的分类准确率(模型得分)

2024-06-12 16:14:36 770

原创 K近邻算法

print("K近邻算法模型的分类准确率:", accuracy)print("训练集特征形状:", X_train.shape)print("测试集特征形状:", X_test.shape)# 使用测试集计算K近邻算法模型的分类准确率(模型得分)# 使用训练集训练选取的最优K值下的K近邻算法。print("最优K值:", best_k)# 使用网格搜索法验证最优K值(邻居数)# 使用K近邻算法模型预测测试集结果。# 检查训练集和测试集特征的形状。# 分割数据集为训练集和测试集。# 初始化K近邻算法。

2024-06-12 16:11:52 596

拓扑图的各种制作与完善

拓扑图的各种制作与完善

2024-06-13

计算机网络的相关配置加文档说明

计算机网络的相关配置加文档说明

2024-06-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除