函数的连续性
函数在一点极限存在的3要素:
- 函数在此点极限存在, left and right
- 函数在此点定义存在
- 函数在此点极限值等于函数值
函数的极限可以在函数的定义域之外;
因为极限本身的定义就是无穷小, 且x无法到达极限;
常数的极限就是该常数, [极限]往往对两种情况较为有意义, 一种是函数是收敛的, 此时极限等于一个常数; 另一种泽是极限是发散的, 此时极限往往等于无穷大;
当函数的左右极限相等时, 此时函数在左右极限之间有一个间断点, 为了消除这个间断点, 我们要在此添加1个点, 但这个点不能上跳下跳, 这个点的函数值 必须和左右极限都相等, 才能将左右极限之间的不连续性, 变为连续性函数;
通俗地说,函数在该点连续意味着它的双向极限和函数值是连续的;
导数
- f(a)存在
- lim(x→a) [f(x) - f(a)] / (x - a) 存在
- f'(a)存在
导数通俗的理解就是任意函数的切线, 导数有一个通俗的叫法, 我觉得叫斜率, 在物理学上, 导数又叫作变化率; 当然还有二次导数, 比如物理学中, 位移 and 时间函数的导数是速度, 而速度-时间的导数是加速度;
我个人喜欢用斜率函数去代替导函数, 导数;
我们在一次函数模型: y = kx + b 中, 明显k就是斜率, 我们对这个式子求导, 我们发现在多项式中, 常数的导数是0, 因为常数只是对函数的值域进行上下平移, 而这种过程不会对函数的斜率造成影响, 而求导的过程就是我们得到一个式子, 它可以计算原函数的定义域上每一点的切线斜率;
因此我认为导函数更重要的一个俗称是切线函数, 求导的过程也叫求解切线, 而使用切线函数就能确定x在某一个点的斜率;
为什么连续不一定可导?
首先, 我们能隐约察觉到函数的连续性和可导性存在关联, 如果一个函数在a点不连续, 则它肯定不是可导的; 连续性的定义是极限值等于函数值, 这样确保了a点不是个孤立点, 那么求该点的切线才有意义;
首先有一个定义是, 我们认为切线函数是唯一的, 如果是一个间断点, 我们能找到无数条切线, 那自然就不可导了;
如果原函数是光滑的曲线, 那自然是在定义域内处处都可导; 但原函数是折线, 那就会出现什么情况?
折线的特点是斜率在一个区间内都是常数, 然后经过一点后, 突然斜率变为另一个常数; 在折线的斜率发生变化的中间点上, 是无法找到一条切线的, 因为切线只在这个点的两侧存在, 在该点并不存在;
大家注意, 折线图在拐点是不存在导数的, 因为左侧导数和右侧导数不相等, 即 在该点的左侧斜率和右侧斜率不相等, 则该点的导数不存在;
因此我们对可导性有了一个清晰的定义, 如果函数在该点可导, 则必须满足:
- 函数在该点连续
- 函数在该点的左侧导数等于右侧导数
翻译成大白话就是: 不是所有函数都可导, 可导函数只包括两类函数, 一种是一次函数, 另一种是光滑曲线, 因为只有这两种函数才能求切线;
实际上在应用中, 光滑曲线是不存在的, 折线图才是真实数据, 那么此时我们要注意书写, 导数对应的定义域必须写开区间, 因为拐点的导数不存在, 比如说折线图是 x0, x1, x2 三个点;
那么我们要说原函数在 区间内可导;
OK, 我来更进一步说明导数的神奇之处, 很多人对导数的误区在于连续函数必定可导, 然而这个定义需要修正为, 连续函数且都是光滑点才可导;
非光滑点, 又叫拐点, 表示函数在某点左侧的切线和右侧的切线不相等;
等价无穷小
首先, 无穷小指的是收敛的趋势, 等价无穷小的概念很简单, 意思就是说如果函数 和
的收敛速度相等, 那么我们得出结果
或者说
;
除此之外, 还有同阶无穷小, 同阶无穷小表示 f(x) / g(x) 的极限可趋近于无穷大 or 无穷小;
虽然, 我们之前定义极限的时候, 可能发现两个函数最终会趋于同一个极限, 但是我们能明显发现不同函数在不同区间的收敛速度是不一样的, 此时我们 想知道 f(x) 和 g(x) 谁收敛的更快, 于是我们便定义了更多东西;
看个例子:
lim(x→0) x / (x^2) = ∞
lim(x→0) 1 / x = ∞
这表示当 x 趋近于零时,x / (x^2) 的值趋近于正无穷大;
低阶无穷小, 或高阶无穷小一般用来衡量函数的收敛, 发散速度, 一般来说变化率越大的函数, 它的收敛发散速度也越快;
举个例子, 我有两个函数, f(x) = x, g(x) = x ** 2;
那么此时, 我可以说f(x)是g(x)的低阶无穷小, 反过来说g(x)是f(x)的高阶无穷小; 因为 f(x) 的变化率相对g(x)来说是微不足道的;
那么我们如何定义低阶无穷小和高阶无穷小呢?
首先我们看看无穷大的定义:
然后再看看无穷小的定义:
我们先看无穷大, g(x)=x的收敛速度是远大于f(x)=1的.