高数极限科普, 函数的连续性and可导性 -- [高数]

本文探讨了函数连续性、函数极限存在的条件、导数的定义及其与连续性的关系,强调了可导函数需满足连续且左右导数相等。同时,介绍了等价无穷小的概念,以及低阶和高阶无穷小在衡量函数收敛速度中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数的连续性

函数在一点极限存在的3要素:

  1. 函数在此点极限存在, left and right
  2. 函数在此点定义存在
  3. 函数在此点极限值等于函数值

函数的极限可以在函数的定义域之外;

因为极限本身的定义就是无穷小, 且x无法到达极限;

常数的极限就是该常数, [极限]往往对两种情况较为有意义, 一种是函数是收敛的, 此时极限等于一个常数; 另一种泽是极限是发散的, 此时极限往往等于无穷大;

当函数的左右极限相等时, 此时函数在左右极限之间有一个间断点, 为了消除这个间断点, 我们要在此添加1个点, 但这个点不能上跳下跳, 这个点的函数值 必须和左右极限都相等, 才能将左右极限之间的不连续性, 变为连续性函数;

通俗地说,函数在该点连续意味着它的双向极限和函数值是连续的;

导数

  1.  f(a)存在
  2. lim(x→a) [f(x) - f(a)] / (x - a) 存在
  3. f'(a)存在

导数通俗的理解就是任意函数的切线, 导数有一个通俗的叫法, 我觉得叫斜率, 在物理学上, 导数又叫作变化率; 当然还有二次导数, 比如物理学中, 位移 and 时间函数的导数是速度, 而速度-时间的导数是加速度;

我个人喜欢用斜率函数去代替导函数, 导数;

 我们在一次函数模型: y = kx + b 中, 明显k就是斜率, 我们对这个式子求导, 我们发现在多项式中, 常数的导数是0, 因为常数只是对函数的值域进行上下平移, 而这种过程不会对函数的斜率造成影响, 而求导的过程就是我们得到一个式子, 它可以计算原函数的定义域上每一点的切线斜率;

因此我认为导函数更重要的一个俗称是切线函数, 求导的过程也叫求解切线, 而使用切线函数就能确定x在某一个点的斜率;

为什么连续不一定可导?

首先, 我们能隐约察觉到函数的连续性和可导性存在关联, 如果一个函数在a点不连续, 则它肯定不是可导的; 连续性的定义是极限值等于函数值, 这样确保了a点不是个孤立点, 那么求该点的切线才有意义; 

首先有一个定义是, 我们认为切线函数是唯一的, 如果是一个间断点, 我们能找到无数条切线, 那自然就不可导了; 

如果原函数是光滑的曲线, 那自然是在定义域内处处都可导; 但原函数是折线, 那就会出现什么情况?

折线的特点是斜率在一个区间内都是常数, 然后经过一点后, 突然斜率变为另一个常数; 在折线的斜率发生变化的中间点上, 是无法找到一条切线的, 因为切线只在这个点的两侧存在, 在该点并不存在;

 大家注意, 折线图在拐点是不存在导数的, 因为左侧导数和右侧导数不相等, 即 在该点的左侧斜率和右侧斜率不相等, 则该点的导数不存在;

因此我们对可导性有了一个清晰的定义, 如果函数在该点可导, 则必须满足:

  1.  函数在该点连续
  2.  函数在该点的左侧导数等于右侧导数

翻译成大白话就是: 不是所有函数都可导, 可导函数只包括两类函数, 一种是一次函数, 另一种是光滑曲线, 因为只有这两种函数才能求切线;

实际上在应用中, 光滑曲线是不存在的, 折线图才是真实数据, 那么此时我们要注意书写, 导数对应的定义域必须写开区间, 因为拐点的导数不存在, 比如说折线图是 x0, x1, x2 三个点;

那么我们要说原函数在 (x_0, x_1) \cup (x_1, x_2) 区间内可导;

OK, 我来更进一步说明导数的神奇之处, 很多人对导数的误区在于连续函数必定可导, 然而这个定义需要修正为, 连续函数且都是光滑点才可导;

非光滑点, 又叫拐点, 表示函数在某点左侧的切线和右侧的切线不相等;

等价无穷小

首先, 无穷小指的是收敛的趋势, 等价无穷小的概念很简单, 意思就是说如果函数 f(x)  和 g(x) 的收敛速度相等, 那么我们得出结果  \lim_{x \to a}\frac{f(x)}{g(x)} = 1  或者说 {f(x)} \sim ~ {g(x)} ;

除此之外, 还有同阶无穷小, 同阶无穷小表示 f(x) / g(x) 的极限可趋近于无穷大 or 无穷小;

虽然, 我们之前定义极限的时候, 可能发现两个函数最终会趋于同一个极限, 但是我们能明显发现不同函数在不同区间的收敛速度是不一样的, 此时我们 想知道 f(x) 和 g(x) 谁收敛的更快, 于是我们便定义了更多东西;

看个例子:

lim(x→0) x / (x^2) = ∞

lim(x→0) 1 / x = ∞

这表示当 x 趋近于零时,x / (x^2) 的值趋近于正无穷大;

低阶无穷小, 或高阶无穷小一般用来衡量函数的收敛, 发散速度, 一般来说变化率越大的函数, 它的收敛发散速度也越快; 

举个例子, 我有两个函数, f(x) = x, g(x) = x ** 2; 

那么此时, 我可以说f(x)是g(x)的低阶无穷小, 反过来说g(x)是f(x)的高阶无穷小; 因为 f(x) 的变化率相对g(x)来说是微不足道的;

那么我们如何定义低阶无穷小和高阶无穷小呢?

首先我们看看无穷大的定义: 

\lim_{x \to 0} \frac{1}{x} = \infty 

然后再看看无穷小的定义:

\lim_{x \to \infty} \frac{1}{x} = 0

我们先看无穷大, g(x)=x的收敛速度是远大于f(x)=1的.


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值