基于Python的车牌识别系统 深度学习 毕业设计 (附源码)建议收藏

本文详细介绍了使用Python实现的中文车牌识别系统,涉及深度学习算法、视频和摄像头识别、车牌管理,以及车牌检测与识别的步骤和国内车牌特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Python的车牌识别系统 深度学习 毕业设计 (附源码)

一、项目介绍

         本文详细介绍基于深度学习的中文车牌识别与管理系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面。在界面中既可以选择需要识别的车牌视频、图片文件、批量图片进行检测识别,也可以通过电脑自带的摄像头进行实时检测、识别、管理车牌,通过车牌记录查看历史识别的车牌。

在这里插入图片描述

二、 效果演示

(一)选择车牌图片识别

        

在这里插入图片描述

(二)视频识别效果展示

        很多时候我们需要识别一段视频中的车牌信息,这里设计了视频选择功能。同样的在“识别车牌”功能选项下,点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别车牌,并将结果记录在右下角表格中,效果如下图所示: ![在这里插入图片描述](https://img-blog.csdnimg.cn/1eed79c107fd48968accb4aa16a7db96.png)

(三)摄像头检测效果展示

        在真实场景中,我们往往利用设备摄像头获取实时画面,同时需要对画面中的车牌进行识别,同样可以在“识别车牌”功能选项下选择此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的车牌,识别结果展示如下图:

在这里插入图片描述

(五)管理车牌效果展示

        对于已经存在的车牌数据可选择“管理车牌”功能选项按钮,切换至管理界面,选择表格中要删除或更新车牌数据栏,点击确定后系统自动更新车牌数据库,该功能展示如下图:

在这里插入图片描述

二、车牌检测与识别

    目前,智能交通系统中集成运用计算机视觉、物联网、人工智能等多种技术成为未来发展方向。其中,车牌识别(License Plate Recognition, LPR)技术作为一项重要技术,从获取的图像中提取目标车辆的车牌信息,成为完善智能交通管理运行的基础。

    由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字

在这里插入图片描述
由于本文介绍的是中文车牌,所以可以简单了解一下国内汽车拍照的特点:字符数为七个,包括汉字、字母和数字,车牌轮廓长宽比例基本固定。车牌颜色组合中,其中最常见的组合为普通小型汽车蓝底白字和新能源汽车的渐变绿底黑字。总结来说,车牌是一个有特点的图像区域,几种特征可以综合起来确定车牌定位,所以之前就有利用车牌与周围环境的差异的算法。目前常见的车牌定位算法有以下 4 种:基于颜色、纹理、边缘信息的车牌定位算法和基于人工神经网络的车牌定位算法2。

为了方便演示,博主绘制了一张车牌识别的流程图,如下图所示,常规的步骤包括图像采集、预处理、车牌定位、字符分割、字符识别、输出结果。深度学习技术成熟之后,端到端的网络模型使得这一过程变得简单起来。从思想上来说,基于深度学习的车牌识别实现思路主要包括两个部分:(1)车牌检测定位;(2)车牌字符识别。

在这里插入图片描述

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。

[毕业设计]2023-2024年最新最全计算机专业毕设选题推荐汇总

Python项目——毕业设计选题参考

本科生毕业设计选题大全——计算机类(Python/Java)

2023年 - 2024年 最新计算机毕业设计 本科 选题大全 汇总

Java项目分享(50个)

​我是源码之家,感谢您阅读本文,欢迎一键三连哦。

近千套项目源码,项目分享学习,涵盖Python/Java/大数据等
查看主页学习更多项目~

了解更多项目源码链接: https://blog.csdn.net/2201_75772776

​我是源码之家,感谢您阅读本文,欢迎一键三连哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值