博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
🍅由于篇幅限制,想要获取完整文章或者源码,或者代做,拉到文章底部即可看到个人VX。🍅
[毕业设计]2023-2024年最新最全计算机专业毕设选题推荐汇总
本科生毕业设计选题大全——计算机类(Python/Java)
2023年 - 2024年 最新计算机毕业设计 本科 选题大全 汇总
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。
1、开发技术
Python语言、Flask后端框架、vue前端框架、MySQL数据库
基于用户协同过滤推荐算法、基于物品协同过滤推荐算法、
LSTM情感分析、Echarts可视化、Scrapy爬虫框架
2、功能模块
音乐数据的爬取:爬取歌曲、歌手、歌词、评论
音乐数据的可视化:数据大屏+多种分析图【十几个图】
深度学习之LSTM 音乐评论情感分析
交互式协同过滤音乐推荐: 2种协同过滤算法、通过点击歌曲喜欢来修改用户对歌曲的评分
歌词、乐评的词云、登录、注册、数据爬虫
3、项目界面
(1)音乐数据可视化分析
(2)音乐评论情感分析
(3)基于协同过滤推荐算法推荐模块
(4)歌曲热度分析
(5)词云分析
(6)情感分析情感预测模块------LSTM深度学习算法
(7)注册登录模块
(8)项目架构图
4、推荐算法
该算法主要用相似统计的方法得到具有相似爱好或者兴趣的相邻用户。基于用户(User-Based)的协同过滤算法首先要根据用户历史行为信息,寻找与新用户相似的其他用户;同时,根据这些相似用户对其他项的评价信息预测当前新用户可能喜欢的项。给定用户评分数据矩阵 R,基于用户的协同过滤算法需要定义相似度函数 s:U×U→R,以计算用户之间的相似度,然后根据评分数据和相似矩阵计算推荐结果。
具体步骤如下:第一步,收集用户信息。收集可以代表用户兴趣的信息。一般的网站系统使用评分的方式或是给予评价,这种方式被称为“主动评分”。另外一种是“被动评分”,是根据用户的行为模式由系统代替用户完成评价,不需要用户直接打分或输入评价数据。电子商务网站在被动评分的数据获取上有其优势,用户购买的商品记录是相当有用的数据。第二步,最近邻搜索(Nearest neighbor search, NNS)。以用户为基础(User-based)的协同过滤的出发点是与用户兴趣爱好相同的另一组用户,就是计算两个用户的相似度。例如:查找 n 个和 A 有相似兴趣用户,把他们对 M 的评分作为 A 对 M 的评分预测。一般会根据数据的不同选择不同的算法, 目前较多使用的相似度算法有 Pearson Correlation Coefficient(皮尔逊相关系数)、Cosine-based Similarity(余弦相似度)、Adjusted Cosine Similarity(调整后的余弦相似度)。
基于项目的协同过滤算法
该以项目为基础的协同过滤方法有一个基本的假设“能够引起用户兴趣的项目,必定与其之前评分高的项目相似”,通过计算项目之间的相似性来代替用户之间的相似性。
具体步骤如下:第一步,收集用户信息。同以用户为基础(User-based)的
协同过滤。第二步,针对项目的最近邻搜索。先计算已评价项目和待预测项目的相似度,并以相似度作为权重,加权各已评价项目的分数,得到待预测项目的预测值。例如:要对项目 A 和项目 B 进行相似性计算,要先找出同时对 A 和 B 打过分的组合,对这些组合进行相似度计算。第三步,产生推荐结果。以项目为基础的协同过滤不用考虑用户间的差别,所以精度比较差。但是却不需要用户的历史数据,或是进行用户识别。对于项目来讲,它们之间的相似性要稳定很多,因此可以离线完成工作量最大的相似性计算步骤,从而降低了在线计算量,提高推荐效率,尤其是在用户多于项目的情形下尤为显著。
源码获取:
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人VX。🍅
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻