毕业设计:图书推荐系统 协同过滤推荐算法 双推荐算法 Django框架 Echarts可视化 Hadoop spark 大数据毕业设计(源码+文档)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:Python语言 MySQL数据库 Django框架 Echarts可视化 协同过滤推荐算法(基于用户+基于图书) html

2、项目界面

(1)图书详情页

在这里插入图片描述

(2)图书信息列表
在这里插入图片描述

(3)图书推荐(基于用户+基于图书)

在这里插入图片描述

(4)图书点赞收藏、评分
在这里插入图片描述

(5)可视化分析1----图书分类数量与图书评分

在这里插入图片描述

(6)可视化分析2----词云图分析

在这里插入图片描述

(7)图书上架数量分析
在这里插入图片描述

(8)图书类型占比分析

在这里插入图片描述

(9)图书分类
在这里插入图片描述

(10)个人信息-----我的收藏、评论、评分
在这里插入图片描述

(11)注册登录
在这里插入图片描述

(12)后台数据管理

在这里插入图片描述

3、项目说明

摘要
随着互联网的快速发展和移动设备的普及,人们获取和阅读图书的方式发生了巨大的变化。传统的纸质书籍逐渐被电子书和在线阅读所取代,用户可以通过互联网随时随地获取并阅读自己感兴趣的图书。在这样的背景下,图书推荐系统的出现填补了用户阅读体验中的信息匮乏和选择困难等问题,为用户提供个性化、精准的阅读推荐,具有重要的研究背景和深远的意义。
本系统使用Python开发,运用协同过滤推荐算法,完成通过用户的行为向其推荐图书的目的。后端主要使用Django框架,前端页面的开发选择了Bootstrap框架。利用MySQL数据库存储信息。本系统的前端用户模块主要包括注册、登录、图书标签分类、图书推荐、图书列表、图书排序等、后台管理模块主要包括用户管理、图书图书管理、用户权限管理等。推荐算法方面同时含有基于用户的协同过滤以及基于物品的协同过滤推荐,本系统可以为用户提供个性化、精准的阅读推荐,具有重要的研究意义。

关键词: 图书推荐; 协同过滤推荐算法; Python;可视化


1. 图书详情页

  • 功能描述:展示单本图书的详细信息,包括书名、作者、出版社、内容简介、封面图片等。
  • 技术实现:通过Django框架从MySQL数据库中查询图书的详细信息,并在HTML页面中展示。
  • 用户交互:用户可以在此页面进行评论、评分、收藏或点赞等操作。

2. 图书信息列表

  • 功能描述:展示图书的列表信息,通常包括书名、作者、评分、分类等。
  • 技术实现:通过Django的视图和模板渲染,从数据库中查询图书信息并分页显示。
  • 用户交互:用户可以通过搜索、筛选功能快速找到感兴趣的图书。

3. 图书推荐(基于用户+基于图书)

  • 功能描述:根据用户的浏览历史和评分行为,推荐可能感兴趣的图书。
  • 技术实现:采用协同过滤算法(基于用户或基于图书)计算推荐结果,并通过Django展示在前端。
  • 用户交互:用户可以查看推荐结果,并直接点击进入图书详情页。

4. 图书点赞收藏、评分

  • 功能描述:用户可以对图书进行点赞、收藏或评分操作。
  • 技术实现:通过Django的表单和视图处理用户的操作,并将数据存储到MySQL数据库中。
  • 用户交互:用户在图书详情页或列表页可以进行点赞、收藏或评分,系统实时反馈操作结果。

5. 可视化分析1——图书分类数量与图书评分

  • 功能描述:通过图表展示不同分类的图书数量和平均评分。
  • 技术实现:使用Echarts生成柱状图或折线图,数据从MySQL数据库中提取。
  • 用户交互:用户可以通过图表直观了解图书分类的分布和评分情况。

6. 可视化分析2——词云图分析

  • 功能描述:通过词云图展示图书评论中的高频词汇,分析用户对图书的评价倾向。
  • 技术实现:使用Python处理文本数据,生成词云图并通过HTML展示。
  • 用户交互:用户可以点击词云图中的关键词,查看相关的评论内容。

7. 图书上架数量分析

  • 功能描述:展示图书上架数量随时间的变化趋势。
  • 技术实现:通过Echarts生成折线图,数据从数据库中提取。
  • 用户交互:用户可以查看图书上架数量的变化,了解热门时间段。

8. 图书类型占比分析

  • 功能描述:通过饼图展示不同图书类型的占比情况。
  • 技术实现:使用Echarts生成饼图,数据从MySQL数据库中提取。
  • 用户交互:用户可以直观了解各类图书的分布比例。

9. 图书分类

  • 功能描述:展示图书的分类目录,方便用户快速查找。
  • 技术实现:通过Django模板渲染分类列表,用户点击分类可进入对应的图书列表。
  • 用户交互:用户可以通过分类筛选快速找到感兴趣的图书。

10. 个人信息——我的收藏、评论、评分

  • 功能描述:展示用户个人的收藏、评论和评分记录。
  • 技术实现:通过Django的用户认证系统,从数据库中查询用户相关数据并展示。
  • 用户交互:用户可以查看和管理自己的收藏、评论和评分记录。

11. 注册登录

  • 功能描述:用户可以通过注册和登录功能,创建个人账户或访问已有账户。
  • 技术实现:使用Django的认证系统实现用户注册、登录和密码管理。
  • 用户交互:用户输入用户名和密码进行登录,或填写注册信息创建新账户。

12. 后台数据管理

  • 功能描述:管理员可以通过后台管理系统对图书信息、用户信息等进行管理。
  • 技术实现:使用Django Admin或自定义后台管理页面实现数据增删改查功能。
  • 用户交互:管理员可以添加新图书、编辑图书信息、管理用户权限等。

4、核心代码

# -*-coding:utf-8-*-
import os

os.environ["DJANGO_SETTINGS_MODULE"] = "recommend.settings"
import django

django.setup()
from item.models import *
from math import sqrt, pow
import operator
from django.db.models import Subquery, Q, Count


# from django.shortcuts import render,render_to_response
class UserCf:

    # 获得初始化数据
    def __init__(self, all_user):
        self.all_user = all_user

    # 通过用户名获得列表,仅调试使用
    def getItems(self, username1, username2):
        return self.all_user[username1], self.all_user[username2]

    # 计算两个用户的皮尔逊相关系数
    def pearson(self, user1, user2):  # 数据格式为:房源id,浏览此
        sum_xy = 0.0  # user1,user2 每项打分的成绩的累加
        n = 0  # 公共浏览次数
        sum_x = 0.0  # user1 的打分总和
        sum_y = 0.0  # user2 的打分总和
        sumX2 = 0.0  # user1每项打分平方的累加
        sumY2 = 0.0  # user2每项打分平方的累加
        for movie1, score1 in user1.items():
            if movie1 in user2.keys():  # 计算公共的浏览次数
                n += 1
                sum_xy += score1 * user2[movie1]
                sum_x += score1
                sum_y += user2[movie1]
                sumX2 += pow(score1, 2)
                sumY2 += pow(user2[movie1], 2)
        if n == 0:
            # print("p氏距离为0")
            return 0
        molecule = sum_xy - (sum_x * sum_y) / n  # 分子
        denominator = sqrt((sumX2 - pow(sum_x, 2) / n) * (sumY2 - pow(sum_y, 2) / n))  # 分母
        if denominator == 0:
            return 0
        r = molecule / denominator
        return r

    # 计算与当前用户的距离,获得最临近的用户
    def nearest_user(self, current_user, n=1):
        distances = {}
        # 用户,相似度
        # 遍历整个数据集
        for user, rate_set in self.all_user.items():
            # 非当前的用户
            if user != current_user:
                distance = self.pearson(self.all_user[current_user], self.all_user[user])
                # 计算两个用户的相似度
                distances[user] = distance
        closest_distance = sorted(
            distances.items(), key=operator.itemgetter(1), reverse=True
        )
        # 最相似的N个用户
        print("closest user:", closest_distance[:n])
        return closest_distance[:n]

    # 给用户推荐房源
    def recommend(self, username, n=3):
        recommend = {}
        nearest_user = self.nearest_user(username, n)
        for user, score in dict(nearest_user).items():  # 最相近的n个用户
            for movies, scores in self.all_user[user].items():  # 推荐的用户的房源列表
                if movies not in self.all_user[username].keys():  # 当前username没有看过
                    if movies not in recommend.keys():  # 添加到推荐列表中
                        recommend[movies] = scores*score
        # 对推荐的结果按照房源
        # 浏览次数排序
        return sorted(recommend.items(), key=operator.itemgetter(1), reverse=True)


# 基于用户的推荐
def recommend_by_user_id(user_id):
    user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
    current_user = User.objects.get(id=user_id)
    # 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
    # 没有的话,就按照浏览度推荐15个
    if current_user.rate_set.count() == 0:
        if len(user_prefer) != 0:
            movie_list = xiangmu.objects.filter(tags__in=user_prefer)[:15]
        else:
            movie_list = xiangmu.objects.order_by("-c9")[:15]
        return movie_list
    # 选取评分最多的10个用户
    users_rate = Rate.objects.values('user').annotate(mark_num=Count('user')).order_by('-mark_num')
    user_ids = [user_rate['user'] for user_rate in users_rate]
    user_ids.append(user_id)
    users = User.objects.filter(id__in=user_ids)#users 为评分最多的10个用户
    all_user = {}
    for user in users:
        rates = user.rate_set.all()#查出10名用户的数据
        rate = {}
        # 用户有给房源打分 在rate和all_user中进行设置
        if rates:
            for i in rates:
                rate.setdefault(str(i.movie.id), i.mark)#填充房源数据
            all_user.setdefault(user.username, rate)
        else:
            # 用户没有为房源打过分,设为0
            all_user.setdefault(user.username, {})

    user_cf = UserCf(all_user=all_user)
    recommend_list = [each[0] for each in user_cf.recommend(current_user.username, 15)]
    movie_list = list(xiangmu.objects.filter(id__in=recommend_list).order_by("-c9")[:15])
    other_length = 15 - len(movie_list)
    if other_length > 0:
        fix_list = xiangmu.objects.filter(~Q(rate__user_id=user_id)).order_by('-collect')
        for fix in fix_list:
            if fix not in movie_list:
                movie_list.append(fix)
            if len(movie_list) >= 15:
                break
    return movie_list


# 计算相似度
def similarity(movie1_id, movie2_id):
    movie1_set = Rate.objects.filter(movie_id=movie1_id)
    # movie1的打分用户数
    movie1_sum = movie1_set.count()
    # movie_2的打分用户数
    movie2_sum = Rate.objects.filter(movie_id=movie2_id).count()
    # 两者的交集
    common = Rate.objects.filter(user_id__in=Subquery(movie1_set.values('user_id')), movie=movie2_id).values('user_id').count()
    # 没有人给当前房源打分
    if movie1_sum == 0 or movie2_sum == 0:
        return 0
    similar_value = common / sqrt(movie1_sum * movie2_sum)#余弦计算相似度
    return similar_value


#基于物品
def recommend_by_item_id(user_id, k=15):
    # 前三的tag,用户评分前三的房源
    user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
    user_prefer = list(user_prefer)[:3]
    print('user_prefer', user_prefer)
    current_user = User.objects.get(id=user_id)
    # 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
    # 没有的话,就按照浏览度推荐15个
    if current_user.rate_set.count() == 0:
        if len(user_prefer) != 0:
            movie_list = xiangmu.objects.filter(tags__in=user_prefer)[:15]
        else:
            movie_list = xiangmu.objects.order_by("-c9")[:15]
        print('from here')
        return movie_list
    # most_tags = Tags.objects.annotate(tags_sum=Count('name')).order_by('-tags_sum').filter(movie__rate__user_id=user_id).order_by('-tags_sum')
    # 选用户最喜欢的标签中的房源,用户没看过的30部,对这30部房源,计算距离最近
    un_watched = xiangmu.objects.filter(~Q(rate__user_id=user_id), tags__in=user_prefer).order_by('?')[:30]  # 看过的房源
    watched = Rate.objects.filter(user_id=user_id).values_list('movie_id', 'mark')
    distances = []
    names = []
    # 在未看过的房源中找到
    for un_watched_movie in un_watched:
        for watched_movie in watched:
            if un_watched_movie not in names:
                names.append(un_watched_movie)
                distances.append((similarity(un_watched_movie.id, watched_movie[0]) * watched_movie[1], un_watched_movie))#加入相似的房源
    distances.sort(key=lambda x: x[0], reverse=True)
    print('this is distances', distances[:15])
    recommend_list = []
    for mark, movie in distances:
        if len(recommend_list) >= k:
            break
        if movie not in recommend_list:
            recommend_list.append(movie)
    # print('this is recommend list', recommend_list)
    # 如果得不到有效数量的推荐 按照未看过的房源中的热度进行填充
    print('recommend list', recommend_list)
    return recommend_list


if __name__ == '__main__':
    # similarity(2003, 2008)
    print(recommend_by_item_id(1799))




🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值