毕业设计:基于python天气分析预测系统 机器学习 气象数据 随机森林预测算法 爬虫 中国天气网 Django框架 数据分析 可视化大屏(源码+文档)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:
python语言、Django框架、MySQL数据库、Echarts可视化、requests爬虫技术、天气预测(机器学习随机森林预测算法)、HTML
中国天气网(https://lishi.tianqi.com)

系统的功能模块:
(1)注册登录
(2)数据采集(天气网)
(3)首页—全国各省份气温地图
(4)各城市气温分析、天气分析、风向分析、风力分析
(5)各城市天气数据列表
(6)月份气温统计可视化分析
(7)月份空气质量可视化分析
(8)每日风向统计可视化分析
(9)城市词云图分析、天气词云图分析
(10)天气预测-----输入特征值(城市、日期、风向)
(11)个人中心
(12)后台数据管理(天气信息管理、城市信息管理、用户信息管理)

2、项目界面

(1)中国各省份气温地图分布分析
在这里插入图片描述
(2)各城市气温分析折线图、天气分析、风向分析、风力分析
在这里插入图片描述

(3)气温统计分析、极端天气分析

在这里插入图片描述
(4)数据中心—按城市筛选查看天气数据

在这里插入图片描述

(5)气温统计分析、平均空气质量统计分析

在这里插入图片描述

(6)各城市风力统计

在这里插入图片描述

(7)天气词云图分析、城市词云图分析

在这里插入图片描述
(8)天气预测-----选择城市、日期、风向,预测天气

在这里插入图片描述

(9)天气预测-----选择城市、日期、风向,预测天气

在这里插入图片描述

(10)注册登录

在这里插入图片描述

(11)后台数据管理

在这里插入图片描述

(12)数据采集
在这里插入图片描述

3、项目说明

随着信息技术的发展和人们对气象信息需求的增加,天气数据分析与可视化平台的重要性日益凸显。本研究旨在对天气数据进行分析与可视化,本文以全国各城市市为例,提供气温变化趋势、气温分布、风向风力等信息的分析与展示。本文采用Python语言、Django框架、MySQL数据库、Echarts可视化工具、requests爬虫技术和机器学习中的随机森林算法进行构建,主要模块包括用户注册登录、数据采集、数据分析与可视化、天气预测、个人中心以及后台数据管理等模块。通过爬虫技术从天气网获取历史天气数据,并存储在MySQL数据库中。数据分析与可视化模块能够展示气温、天气、风向风力的变化趋势和分布情况,同时提供空气质量分析和数据列表展示。此外,本文还能进行天气预测,为用户提供未来天气状况的参考。研究结果表明,该平台能够有效地为用户提供准确、直观的天气信息,对于能源管理、环境监测和风险评估等方面具有重要的应用价值。

关键字:天气数据分析;数据分析;数据可视化;机器学习;Django框架;Echarts

在这里插入图片描述

总结
本文研究了全国各城市市的天气数据,对数据进行了分析与可视化,通过集成多种技术,实现了对天气数据的全面分析和直观展示。利用Python语言和Django框架,结合MySQL数据库的强大数据存储能力,以及Echarts的高效数据可视化功能,本研究能够为用户提供一个交互式的天气信息分析工具。本文的核心功能包括数据采集、数据分析与可视化、天气预测等。通过爬虫技术,本文能够自动从天气网站获取历史天气数据,并将其存储在数据库中,供后续分析使用。数据分析与可视化模块是本文的亮点之一,它不仅能够展示气温、天气、风向和风力的变化趋势,还能通过词云图直观地反映天气状况的分布情况。此外,平台还提供了月份气温统计和空气质量的可视化分析,使得用户能够快速把握特定时间段内的天气特征。
天气预测模块采用了机器学习中的随机森林算法,通过分析历史数据来预测未来的天气状况。这一功能对于农业、旅游、交通等行业具有重要的参考价值,能够帮助相关决策者提前做好规划和准备。
在各个模块测试阶段,我们对各个模块进行了详细的测试,包括功能测试、性能测试和用户体验测试。测试结果表明,各个模块运行稳定,数据分析准确,可视化效果良好,用户界面友好,能够满足不同用户的需求。
总体而言,本平台不仅提高了天气数据的利用效率,也为公众提供了便捷的天气信息服务。未来的工作将集中在进一步优化算法,提高预测准确性,以及扩展平台功能,使其能够适应更多地区和更广泛的应用场景。此外,随着大数据和人工智能技术的不断发展,我们也将探索将更多先进的技术融入平台,以提供更加智能化的服务。通过本研究,我们相信天气数据分析与可视化平台将在气象信息服务领域发挥越来越重要的作用。

4、核心代码



# 城市数据分析
def cityChar(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    print(city)

    # 1、气温
    date,maxTemp,minTemp = getCityMaxMinTemp(city)
    # 2、天气情况
    resultWeather = getWeatherListByCity(city)
    # 3、风向
    resultWind = getWindListByCity(city)
    # 4、风力
    resultWindOrder = getWindOrderListByCity(city)

    return render(request,'cityChar.html',{
        'userInfo':userInfo,
        'cites':cites,
        'defaultCity':city,
        'date':date,
        'maxTemp':maxTemp,
        'minTemp':minTemp,
        'resultWeather':resultWeather[:15],
        'resultWind':resultWind,
        'resultWindOrder':resultWindOrder
    })


#天气数据表
def tableData(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    print(city)
    tableData = list(getTableData(city))
    return render(request,'tableData.html',{
        'userInfo':userInfo,
        'cites':cites,
        'defaultCity':city,
        'tableData':tableData
    })


#月份气温统计
def monthTempChar(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    # cites = getGlobalData()
    # city = request.GET.get('city') or cites[0]
    # print(city)
    dateList = getMonthData()
    date = request.GET.get('city') or dateList[0]   #原始代码
    # date = request.GET.get('date') or dateList[0]  # 确保使用正确的参数名
    print(date)
    xData,y1Data,y2Data = getAverageTemp(date)
    xDatas,y1Datas,y2Datas = getTopMinMaxTemp(date)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    return render(request,'monthTempChar.html',{
        'userInfo':userInfo,
        'dateList':dateList,
        'defaultDate':date,
        'xData':xData,
        'y1Data':y1Data,
        'y2Data':y2Data,
        'xDatas': xDatas,
        'y1Datas': y1Datas,
        'y2Datas': y2Datas,
        'cites':cites
    })


#月份空气质量
def monthAirChar(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    # print(city)
    dateList = getMonthData()
    date = request.GET.get('city') or dateList[0]
    print(date)
    xData,y1Data,y2Data = getAverageAir(date)
    row,col =getAirqua(date)

    return render(request,'monthAirChar.html',{
        'userInfo':userInfo,
        'dateList':dateList,
        'defaultDate':date,
        'xData': xData,
        'y1Data': y1Data,
        'y2Data': y2Data,
        'row':row,
        'col':col,
        'cites':cites
    })


#每日风向统计
def windChar(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    print(city)

    xData,yData = getWindOreder(city)
    return render(request,'windChar.html',{
        'userInfo':userInfo,
        'cites':cites,
        'defaultCity': city,
        'xData':xData,
        'yData':yData
    })


#城市词云图
def titleCloud(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    return render(request,'titleCloud.html',{
        'userInfo':userInfo,
        'cites':cites
    })

#天气词云图
def weatherCloud(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    return render(request,'weatherCloud.html',{
        'userInfo':userInfo,
        'cites':cites
    })


#天气预测
def predict(request):
    uname = request.session.get('username')
    userInfo = User.objects.get(username=uname)
    windList = getWindList()
    dateList = getDateList()
    cites = getGlobalData()
    cites = getGlobalData()
    city = request.GET.get('city') or cites[0]
    if request.method == 'POST':
        defaultDate = request.POST.get('date') or dateList[0]
        defaultWind = request.POST.get('wind') or dateList[0]
        city = request.POST.get('city') or cites[0]
        print(defaultDate,defaultWind,city)
        print(defaultDate)
        result = preModel(1, [defaultDate, defaultWind,city])
        print(result)
        return render(request, 'predict.html', {
            'userInfo': userInfo,
            'dateList': dateList,
            'defaultDate': defaultDate,

            'windList': windList,
            'defaultWind':defaultWind,

            'cites': cites,
            'defaultCity': city,
            'result':result,
        })
    return render(request, 'predict.html', {
        'userInfo': userInfo,
        'windList':windList,
        'dateList':dateList,
        'cites': cites
    })

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值