python高校微博舆情分析可视化系统 情感分析 爬虫 可视化 Flask框架 vue前端框架 大数据 毕业设计(源码+文档)✅

博主介绍:✌全网粉丝50W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:

Python语言、Flask框架、vue前端框架、Echarts可视化、requests爬虫、snownlp自然语言情绪值分析、hanlp做文字符号处理、numpy、pandas做数据分析处理,mysql数据库,SQLAlchemy用作ORM框架

摘要
在社交网络迅猛发展的今天,社交平台已然成为舆情事件酝酿、扩散和演变的核心舞台。因此,深入剖析社交平台上的网络舆情发展趋势,揭示舆情背后的深层次规律,对于管理者而言具有双重意义。一方面,它能够帮助管理者洞悉用户的喜好与需求,进而优化服务体验,提升服务的个性化水平;另一方面,通过舆情分析,能够客观地映射出社会舆论的走向,全面展现网民的社会价值观,从而辅助决策者提升应对突发事件的能力。基于此,本文设计并实现了一个基于微博平台的舆情分析系统。
本系统从模块设计的角度出发,主要由三大部分构成:数据爬取、微博评论情感分析以及微博数据可视化管理。具体而言,系统以新浪微博数据为数据源,利用Python网络爬虫技术,精准抓取微博话题榜的相关信息,并进行必要的预处理工作。随后,借助开源的自然语言处理库SnowNLP,对评论的情感倾向和话题热度进行深入分析,并将分析结果整理成csv文件。接下来,系统通过上传功能将csv文件存储至数据库,最终以直观易懂的图表形式,将话题舆情分析结果呈现给用户。
在系统的整体架构层面,采用Flask+SQLAlchemy+VUE等先进技术框架进行构建,确保了系统的稳定性和可扩展性。完成系统开发后,对系统进行了全面的功能和性能测试。测试结果显示,该系统能够高效、准确地满足网络舆情分析的需求,有助于用户及时分析、引导和治理由社会突发事件引发的舆情。

2、项目界面

(1)各地区舆情统计分析

在这里插入图片描述

(2)热门舆情话题分析

在这里插入图片描述

(3)话题分类占比分析

在这里插入图片描述

(4)舆情评论分析

在这里插入图片描述

(5)高校舆情分析

在这里插入图片描述

(6)数据库数据

在这里插入图片描述

3、项目说明

摘要
在社交网络迅猛发展的今天,社交平台已然成为舆情事件酝酿、扩散和演变的核心舞台。因此,深入剖析社交平台上的网络舆情发展趋势,揭示舆情背后的深层次规律,对于管理者而言具有双重意义。一方面,它能够帮助管理者洞悉用户的喜好与需求,进而优化服务体验,提升服务的个性化水平;另一方面,通过舆情分析,能够客观地映射出社会舆论的走向,全面展现网民的社会价值观,从而辅助决策者提升应对突发事件的能力。基于此,本文设计并实现了一个基于微博平台的舆情分析系统。
本系统从模块设计的角度出发,主要由三大部分构成:数据爬取、微博评论情感分析以及微博数据可视化管理。具体而言,系统以新浪微博数据为数据源,利用Python网络爬虫技术,精准抓取微博话题榜的相关信息,并进行必要的预处理工作。随后,借助开源的自然语言处理库SnowNLP,对评论的情感倾向和话题热度进行深入分析,并将分析结果整理成csv文件。接下来,系统通过上传功能将csv文件存储至数据库,最终以直观易懂的图表形式,将话题舆情分析结果呈现给用户。
在系统的整体架构层面,采用Flask+SQLAlchemy+VUE等先进技术框架进行构建,确保了系统的稳定性和可扩展性。完成系统开发后,对系统进行了全面的功能和性能测试。测试结果显示,该系统能够高效、准确地满足网络舆情分析的需求,有助于用户及时分析、引导和治理由社会突发事件引发的舆情。

关键字:微博舆情分析,网络爬虫,数据可视化,情感分析

4.1系统总体架构
本系统采用了Flask+SQLAlchemy+VUE的架构,数据采集层、数据处理层以及数据表示层三个核心部分。数据采集层负责通过官方提供的数据应用接口(API)以及自定义的网络爬虫,高效准确地获取网络数据;数据处理层则主要承担数据去噪、中文分词、停用词剔除、关键词提取以及情感分析等关键任务;而数据展示层则专注于面向平台用户,将经过处理的数据以图表、文字等多种形式呈现,同时提供用户交互功能,以满足用户的多样化需求。这三个子层均具备高度的独立性,可以单独作为系统使用,同时也拥有良好的扩展性。具体架构如图4-1所示。

4.2系统功能模块
本系统的主要功能在于搜集微博用户所关注特定话题的相关数据,并对这些数据进行初步处理。之后,通过业务系统的展示,页面能够以清晰直观的方式呈现出某一热点话题的传播速度,以及公众对于这一舆情事件所持有的态度。
因此,系统可分为三个模块:微博数据采集、微博情感分析和舆情信息展示端。其中,微博数据获取部分由微博话题信息、微博评论及微博热度信息的爬虫三个子部分组成,分别负责抓取微博热搜榜前50条话题的详细信息、每条话题下热门微博的所有评论,以及对应话题的指数信息。微博情感分析模块可分为两个部分:数据预处理和基于SnowNLP库的文本情感分析,负责将采集到的微博数据进行清洗和标准化处理,并分析得到用户的情感倾向。舆情信息展示端的主要功能是将处理后的舆情数据以图表、词云、文本等形式在浏览器中进行详细展示,主要包括热点话题发现、类别占比分析、区域舆情统计、评论情感分析和高
校舆情分析五个部分。具体的功能模块划分如图4-2所示。

4、核心代码


import json
from datetime import date, timedelta, datetime
from flask import Flask, session, jsonify, request
from database.config import db, SQLALCHEMY_DATABASE_URI
from model.User import User
from analysis import calculate
app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = SQLALCHEMY_DATABASE_URI
app.config["TEMPLATES_AUTO_RELOAD"] = True
app.config["SECRET_KEY"] = 'weibo_topic'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db.init_app(app)


@app.before_first_request
def create_tables():
    db.create_all()


@app.route('/recently', methods=['POST'])
def recently_topic():
    """
    最近的本周舆情分析
    1.舆情指数
    2.舆情热搜分析
    :return:
    """
    params = request.get_json()
    dateTime = '2022-5-11T01:10:01'
    dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
    data1 = calculate.weekly_hot_topic(dt=dt)
    data2 = calculate.weekly_topic_total(dt=dt)
    result = {'code': 20000, 'amount': data2, 'topics': data1}
    return jsonify(result)


@app.route('/wordCloud', methods=['POST'])
def weekly_wc():
    """
    热搜话题图谱
    :return:
    """
    data = calculate.weekly_word_cloud()
    result = {'code': 20000, 'data': data}
    return jsonify(result)


@app.route('/category', methods=['POST'])
def category():
    """
    类别占比分析
    1.舆情话题的周类别分析
    2.正负舆情对比分析
    :return:
    """
    param = request.get_json()
    dateTime = param['datetime']
    dateTime = dateTime.split('.')[0]
    dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
    data = calculate.weekly_topic_category(mode='week', dt=dt)
    result = {'code': 20000, 'data': data}
    return jsonify(result)


@app.route('/pop', methods=['POST'])
def pop():
    """
    正负舆情对比分析
    :return:
    """
    param = request.get_json()
    dateTime = param['datetime']
    dateTime = dateTime.split('.')[0]
    dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
    # print('pop cal')
    data = calculate.PositiveOrPassive(dt=dt)
    return jsonify({'code': 20000, 'data': data})


@app.route('/region', methods=['POST'])
def region():
    """
    舆情地区统计
    :return:
    """
    param = request.get_json()
    dateTime = param['datetime']
    dateTime = dateTime.split('.')[0]
    dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
    data = calculate.weekly_topic_region(dt=dt)
    return jsonify({'code': 20000, 'data': data})


@app.route('/uni_param', methods=['POST', 'GET'])
def getUniversityParam():
    """
    获取高校参数信息
    :return:
    """
    data = calculate.getUniversityParam()
    result = {'code': 20000, 'data': data}
    return jsonify(result)


@app.route('/comment', methods=['POST'])
def commentAnalysis():
    """
    评论分析
    :return:
    """
    params = request.get_json()
    topic = params['topic']
    data = calculate.getCommentData(topic)
    result = {'code': 20000, 'data': data}
    return jsonify(result)


@app.route('/university', methods=['POST'])
def query_university():
    """
    搜索大学热搜
    显示该学校的热门话题
    返回指定高校的热搜数据
    :return:
    """
    param = request.get_json()
    name = param['name']
    data = calculate.getTopicByUniversity(name)
    result = {'code': 20000, 'data': data}
    return jsonify(result)


@app.route('/logout', methods=['POST'])
def logout():
    """
    注销
    """
    session.clear()
    data = {'data': '', 'code': 20000}
    return jsonify(data)


@app.route('/info', methods=['GET', 'POST'])
@app.route('/login', methods=['GET', 'POST'])
def login():
    data = request.get_json()
    if (request.method == 'GET') and (session.get('userid') is not None):
        user = User().userinfo(userid=session['userid'])
        data = {'data': user.serialize(), 'code': 20000}
        return jsonify(data)
    if request.method == 'POST':
        user = User()
        user = user.valid_login(username=data['username'], password=data['password'])
        if user:
            session['user'] = str(user.username)
            session['userid'] = str(user.id)
            data = {'data': user.serialize(), 'code': 20000}
            return jsonify(data)
        else:
            data['error'] = '错误的用户名或密码!'
    return data


@app.route('/')
def hello_world():
    return 'Hello World!'


if __name__ == '__main__':
    app.run()



🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值