博主介绍:✌全网粉丝50W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
1、项目介绍
技术栈:
Python语言、Flask框架、vue前端框架、Echarts可视化、requests爬虫、snownlp自然语言情绪值分析、hanlp做文字符号处理、numpy、pandas做数据分析处理,mysql数据库,SQLAlchemy用作ORM框架
摘要
在社交网络迅猛发展的今天,社交平台已然成为舆情事件酝酿、扩散和演变的核心舞台。因此,深入剖析社交平台上的网络舆情发展趋势,揭示舆情背后的深层次规律,对于管理者而言具有双重意义。一方面,它能够帮助管理者洞悉用户的喜好与需求,进而优化服务体验,提升服务的个性化水平;另一方面,通过舆情分析,能够客观地映射出社会舆论的走向,全面展现网民的社会价值观,从而辅助决策者提升应对突发事件的能力。基于此,本文设计并实现了一个基于微博平台的舆情分析系统。
本系统从模块设计的角度出发,主要由三大部分构成:数据爬取、微博评论情感分析以及微博数据可视化管理。具体而言,系统以新浪微博数据为数据源,利用Python网络爬虫技术,精准抓取微博话题榜的相关信息,并进行必要的预处理工作。随后,借助开源的自然语言处理库SnowNLP,对评论的情感倾向和话题热度进行深入分析,并将分析结果整理成csv文件。接下来,系统通过上传功能将csv文件存储至数据库,最终以直观易懂的图表形式,将话题舆情分析结果呈现给用户。
在系统的整体架构层面,采用Flask+SQLAlchemy+VUE等先进技术框架进行构建,确保了系统的稳定性和可扩展性。完成系统开发后,对系统进行了全面的功能和性能测试。测试结果显示,该系统能够高效、准确地满足网络舆情分析的需求,有助于用户及时分析、引导和治理由社会突发事件引发的舆情。
2、项目界面
(1)各地区舆情统计分析
(2)热门舆情话题分析
(3)话题分类占比分析
(4)舆情评论分析
(5)高校舆情分析
(6)数据库数据
3、项目说明
摘要
在社交网络迅猛发展的今天,社交平台已然成为舆情事件酝酿、扩散和演变的核心舞台。因此,深入剖析社交平台上的网络舆情发展趋势,揭示舆情背后的深层次规律,对于管理者而言具有双重意义。一方面,它能够帮助管理者洞悉用户的喜好与需求,进而优化服务体验,提升服务的个性化水平;另一方面,通过舆情分析,能够客观地映射出社会舆论的走向,全面展现网民的社会价值观,从而辅助决策者提升应对突发事件的能力。基于此,本文设计并实现了一个基于微博平台的舆情分析系统。
本系统从模块设计的角度出发,主要由三大部分构成:数据爬取、微博评论情感分析以及微博数据可视化管理。具体而言,系统以新浪微博数据为数据源,利用Python网络爬虫技术,精准抓取微博话题榜的相关信息,并进行必要的预处理工作。随后,借助开源的自然语言处理库SnowNLP,对评论的情感倾向和话题热度进行深入分析,并将分析结果整理成csv文件。接下来,系统通过上传功能将csv文件存储至数据库,最终以直观易懂的图表形式,将话题舆情分析结果呈现给用户。
在系统的整体架构层面,采用Flask+SQLAlchemy+VUE等先进技术框架进行构建,确保了系统的稳定性和可扩展性。完成系统开发后,对系统进行了全面的功能和性能测试。测试结果显示,该系统能够高效、准确地满足网络舆情分析的需求,有助于用户及时分析、引导和治理由社会突发事件引发的舆情。
关键字:微博舆情分析,网络爬虫,数据可视化,情感分析
4.1系统总体架构
本系统采用了Flask+SQLAlchemy+VUE的架构,数据采集层、数据处理层以及数据表示层三个核心部分。数据采集层负责通过官方提供的数据应用接口(API)以及自定义的网络爬虫,高效准确地获取网络数据;数据处理层则主要承担数据去噪、中文分词、停用词剔除、关键词提取以及情感分析等关键任务;而数据展示层则专注于面向平台用户,将经过处理的数据以图表、文字等多种形式呈现,同时提供用户交互功能,以满足用户的多样化需求。这三个子层均具备高度的独立性,可以单独作为系统使用,同时也拥有良好的扩展性。具体架构如图4-1所示。
4.2系统功能模块
本系统的主要功能在于搜集微博用户所关注特定话题的相关数据,并对这些数据进行初步处理。之后,通过业务系统的展示,页面能够以清晰直观的方式呈现出某一热点话题的传播速度,以及公众对于这一舆情事件所持有的态度。
因此,系统可分为三个模块:微博数据采集、微博情感分析和舆情信息展示端。其中,微博数据获取部分由微博话题信息、微博评论及微博热度信息的爬虫三个子部分组成,分别负责抓取微博热搜榜前50条话题的详细信息、每条话题下热门微博的所有评论,以及对应话题的指数信息。微博情感分析模块可分为两个部分:数据预处理和基于SnowNLP库的文本情感分析,负责将采集到的微博数据进行清洗和标准化处理,并分析得到用户的情感倾向。舆情信息展示端的主要功能是将处理后的舆情数据以图表、词云、文本等形式在浏览器中进行详细展示,主要包括热点话题发现、类别占比分析、区域舆情统计、评论情感分析和高
校舆情分析五个部分。具体的功能模块划分如图4-2所示。
4、核心代码
import json
from datetime import date, timedelta, datetime
from flask import Flask, session, jsonify, request
from database.config import db, SQLALCHEMY_DATABASE_URI
from model.User import User
from analysis import calculate
app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = SQLALCHEMY_DATABASE_URI
app.config["TEMPLATES_AUTO_RELOAD"] = True
app.config["SECRET_KEY"] = 'weibo_topic'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db.init_app(app)
@app.before_first_request
def create_tables():
db.create_all()
@app.route('/recently', methods=['POST'])
def recently_topic():
"""
最近的本周舆情分析
1.舆情指数
2.舆情热搜分析
:return:
"""
params = request.get_json()
dateTime = '2022-5-11T01:10:01'
dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
data1 = calculate.weekly_hot_topic(dt=dt)
data2 = calculate.weekly_topic_total(dt=dt)
result = {'code': 20000, 'amount': data2, 'topics': data1}
return jsonify(result)
@app.route('/wordCloud', methods=['POST'])
def weekly_wc():
"""
热搜话题图谱
:return:
"""
data = calculate.weekly_word_cloud()
result = {'code': 20000, 'data': data}
return jsonify(result)
@app.route('/category', methods=['POST'])
def category():
"""
类别占比分析
1.舆情话题的周类别分析
2.正负舆情对比分析
:return:
"""
param = request.get_json()
dateTime = param['datetime']
dateTime = dateTime.split('.')[0]
dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
data = calculate.weekly_topic_category(mode='week', dt=dt)
result = {'code': 20000, 'data': data}
return jsonify(result)
@app.route('/pop', methods=['POST'])
def pop():
"""
正负舆情对比分析
:return:
"""
param = request.get_json()
dateTime = param['datetime']
dateTime = dateTime.split('.')[0]
dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
# print('pop cal')
data = calculate.PositiveOrPassive(dt=dt)
return jsonify({'code': 20000, 'data': data})
@app.route('/region', methods=['POST'])
def region():
"""
舆情地区统计
:return:
"""
param = request.get_json()
dateTime = param['datetime']
dateTime = dateTime.split('.')[0]
dt = datetime.strptime(dateTime, '%Y-%m-%dT%H:%M:%S').date()
data = calculate.weekly_topic_region(dt=dt)
return jsonify({'code': 20000, 'data': data})
@app.route('/uni_param', methods=['POST', 'GET'])
def getUniversityParam():
"""
获取高校参数信息
:return:
"""
data = calculate.getUniversityParam()
result = {'code': 20000, 'data': data}
return jsonify(result)
@app.route('/comment', methods=['POST'])
def commentAnalysis():
"""
评论分析
:return:
"""
params = request.get_json()
topic = params['topic']
data = calculate.getCommentData(topic)
result = {'code': 20000, 'data': data}
return jsonify(result)
@app.route('/university', methods=['POST'])
def query_university():
"""
搜索大学热搜
显示该学校的热门话题
返回指定高校的热搜数据
:return:
"""
param = request.get_json()
name = param['name']
data = calculate.getTopicByUniversity(name)
result = {'code': 20000, 'data': data}
return jsonify(result)
@app.route('/logout', methods=['POST'])
def logout():
"""
注销
"""
session.clear()
data = {'data': '', 'code': 20000}
return jsonify(data)
@app.route('/info', methods=['GET', 'POST'])
@app.route('/login', methods=['GET', 'POST'])
def login():
data = request.get_json()
if (request.method == 'GET') and (session.get('userid') is not None):
user = User().userinfo(userid=session['userid'])
data = {'data': user.serialize(), 'code': 20000}
return jsonify(data)
if request.method == 'POST':
user = User()
user = user.valid_login(username=data['username'], password=data['password'])
if user:
session['user'] = str(user.username)
session['userid'] = str(user.id)
data = {'data': user.serialize(), 'code': 20000}
return jsonify(data)
else:
data['error'] = '错误的用户名或密码!'
return data
@app.route('/')
def hello_world():
return 'Hello World!'
if __name__ == '__main__':
app.run()
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻