博主介绍:✌全网粉丝50W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
1、项目介绍
技术栈:
大数据技术、Hadoop +Spark +Hive、 Python语言 Echarts可视化 机器学习线性回归预测算法 SnowNLP情感舆论分析 MySQL数据库 requests爬虫技术
Spark抖音短视频数据分析可视化系统 Hadoop+Hive 机器学习 线性回归预测算法 情感分析 舆情分析 爬虫 毕业设计
2、项目界面
(1)首页—数据概况
(2)粉丝情况分析
(3)评论数据分析
(4)情感分析舆情分析
(5)词云图分析
(6)地址信息分析—中国地图分布
(7)视频评论数据
(8)预测------机器学习线性回归预测算法
(9)注册登录
(10)数据采集
(11)后台数据管理
3、项目说明
摘 要
本论文基于Spark对抖音数据进行可视化分析,解决传统数据处理与分析方式的效率和准确性问题。随着社交平台和短视频行业的快速发展,海量数据的产生使得信息的实时处理和智能分析变得更加迫切。传统行业依赖人工分析和静态报告,难以实时应对动态变化,且数据处理效率低,分析结果不够精准。
该系统面向抖音平台用户与管理员,前端使用Echarts进行数据可视化,后端采用Python与Spark框架,数据库使用Hive,支持大规模数据的快速处理与分析。系统主要功能包括用户评论、分布地区、粉丝情况分析,舆论情感分析、视频与评论词云图生成,点赞热度预测等。管理员功能则包括视频数据、评论数据分析、粉丝类别和排行榜、点赞率表等数据管理与分析功能,同时提供认证和授权机制保障系统安全性。
关键词:抖音数据;Spark;数据可视化;线性回归预测
本论文研究了基于Spark的抖音数据可视化分析系统的设计与实现,主要围绕数据的采集、分析与预测等核心功能展开。论文首先明确了研究背景与目的,介绍了当前抖音等短视频平台产生的海量数据及其分析的重要性。为了有效分析这些数据,论文采用了先进的大数据处理技术,包括Python语言、Flask框架、Spark框架、Hadoop与Hive数据库等,这些技术能够高效地支持大规模数据的处理、存储和分析。此外,论文还提出了多种数据分析与建模方法,如线性回归预测算法和SnowNLP情感分析技术,旨在为用户提供精准的内容分析、预测结果及情感倾向等信息。系统的设计过程注重了功能需求与技术可行性分析,确保了在技术实现过程中,系统能够满足用户和管理员的不同需求,且在性能、可操作性及市场需求等方面具备一定的优势。
在系统设计与实现部分,论文详细阐述了系统的整体架构和各模块的功能设计与实现过程。系统通过四个主要模块实现了从数据获取到结果展示的完整流程。数据采集模块通过爬虫技术实现了抖音平台视频、评论及用户数据的实时获取,并结合数据清洗与预处理步骤。数据分析模块结合情感分析和词云图等可视化技术,使得用户能够清晰地了解视频评论的舆情态势。数据预测模块基于线性回归与其他算法,对点赞热度和视频表现等进行未来趋势预测。系统测试部分通过多种测试用例验证了各模块的稳定性和准确性,保证了系统能够高效地为用户提供可靠的数据支持。总体而言,本系统在实际应用中具有较强的实用性和前瞻性,为未来的短视频数据分析提供了有价值的技术参考与实践经验。
4、核心代码
# coding:utf8
#spark导包
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.sql.functions import count
from pyspark.sql.functions import monotonically_increasing_id
from pyspark.sql.types import StructType,StructField,IntegerType,StringType,FloatType
from pyspark.sql.functions import col,sum,when
from pyspark.sql.functions import desc,asc
if __name__ == '__main__':
#构建
spark = SparkSession.builder.appName("sparkSQL").master("local[*]").\
config("spark.sql.shuffle.partitions", 2). \
config("spark.sql.warehouse.dir", "hdfs://node1:8020/user/hive/warehouse"). \
config("hive.metastore.uris", "thrift://node1:9083"). \
enableHiveSupport().\
getOrCreate()
#通过sparkContext对象处理数据
sc = spark.sparkContext
#读取数据表
videodata = spark.read.table('videodata')
commentdata = spark.read.table('commentdata')
#
# videodata.show()
# commentdata.show()
#需求一 IP地址
#addres为组
result1 = commentdata.groupby("address").count()
#将数据转为df
df = result1.toPandas()
# print(df)
#sql
# sql
result1.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://localhost:3306/bigdata?useSSL=false&useUnicode=true&charset=utf8"). \
option("dbtable", "addressum"). \
option("user", "root"). \
option("password", "root"). \
option("encoding", "utf-8"). \
save()
# hive
result1.write.mode("overwrite").saveAsTable("addressum", "parquet")
spark.sql("select * from addressum").show()
#需求二:点赞收藏分析
top10 = videodata.select("likeCount","collectCount","description")\
.orderBy(F.desc("likeCount"))\
.limit(10)
result2 = top10.withColumn("ratio",top10["collectCount"]/top10["likeCount"])
# sql
result2.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://localhost:3306/bigdata?useSSL=false&useUnicode=true&charset=utf8"). \
option("dbtable", "likerate"). \
option("user", "root"). \
option("password", "root"). \
option("encoding", "utf-8"). \
save()
# hive
result2.write.mode("overwrite").saveAsTable("likerate", "parquet")
spark.sql("select * from likerate").show()
#需求三: 粉丝数量区间
videodata_df = videodata.withColumn("fansRange",
when(videodata["fansCount"] < 100,"小于100")
.when((videodata["fansCount"]>=100)&(
videodata["fansCount"]<1000 ),"100-1000")
.when((videodata["fansCount"]>=1000)&(
videodata["fansCount"]<10000 ),"1000-10000")
.when((videodata["fansCount"]>=10000)&(
videodata["fansCount"]<100000 ),"10000-100000")
.when(videodata["fansCount"] >= 100000,"大于100000")
.otherwise("未知"))
result3 = videodata_df.groupby("fansRange").count()
# sql
result3.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://localhost:3306/bigdata?useSSL=false&useUnicode=true&charset=utf8"). \
option("dbtable", "fanscategory"). \
option("user", "root"). \
option("password", "root"). \
option("encoding", "utf-8"). \
save()
# hive
result3.write.mode("overwrite").saveAsTable("fanscategory", "parquet")
spark.sql("select * from fanscategory").show()
#需求四:粉丝最多博主TOP
videodata_df = spark.table("videodata").select("username","fansCount")
#降序排列 去重
sorted_df = videodata_df.orderBy(col("fansCount").desc()).drop_duplicates(["username"])
top_ten_df = sorted_df.limit(10)
# sql
top_ten_df.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://localhost:3306/bigdata?useSSL=false&useUnicode=true&charset=utf8"). \
option("dbtable", "fansTop"). \
option("user", "root"). \
option("password", "root"). \
option("encoding", "utf-8"). \
save()
# hive
top_ten_df.write.mode("overwrite").saveAsTable("fansTop", "parquet")
spark.sql("select * from fansTop").show()
#需求五: 评论与分享
videodata_df2 = spark.table("videodata").select("commentCount","shareCount","description")
sorted_df2 = videodata_df2.orderBy(videodata_df2["commentCount"].desc())
top_ten_df2 = sorted_df2.limit(10)
# sql
top_ten_df2.write.mode("overwrite"). \
format("jdbc"). \
option("url", "jdbc:mysql://localhost:3306/bigdata?useSSL=false&useUnicode=true&charset=utf8"). \
option("dbtable", "commentTop"). \
option("user", "root"). \
option("password", "root"). \
option("encoding", "utf-8"). \
save()
# hive
top_ten_df2.write.mode("overwrite").saveAsTable("commentTop", "parquet")
spark.sql("select * from commentTop").show()
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻