python中国地级市城镇化率数据可视化分析系统 数据大屏 Flask框架 Echarts可视化大屏 毕业设计(源码)✅

博主介绍:✌全网粉丝50W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈: Python语言、Flask框架、MySQL数据库、数据分析、Echarts可视化大屏、中国地图、HTML

中国地级市城镇化率数据可视化分析系统+大屏

2、项目界面

(1)数据可视化大屏
在这里插入图片描述

(2)放大各城市查看数据

在这里插入图片描述

3、项目说明

系统概述

该系统通过可视化的方式展示中国各地区的城镇化率数据,帮助用户更直观地了解不同地区城镇化率的变化和分布情况。系统使用了Python语言、Flask框架、MySQL数据库、数据分析技术、Echarts可视化大屏和中国地图等技术栈。

系统功能

  1. 数据展示

    • 总数据量:显示系统中包含的总数据量(5589条)。
    • 地图展示:通过中国地图展示各地区的城镇化率数据,用户可以通过点击地图上的不同区域查看详细信息。
    • 城市词云展示:展示城镇化率较高的城市名称,词云的大小和颜色代表城镇化率的高低。
  2. 数据分析

    • 地域城镇化率分析:通过折线图展示东部、中部和西部地区的城镇化率变化趋势。
    • 所属省份分布情况:通过柱状图展示不同省份的城镇化率数据分布情况。
    • 省份的城镇化率分析:通过柱状图展示各省份的城镇化率数据。
    • 年份的城镇化率分析:通过柱状图展示不同年份的城镇化率变化情况。
  3. 经济带分布情况

    • 所属长江经济带分布情况:通过饼图展示长江经济带内不同地区的城镇化率分布情况。

技术栈

  • 编程语言:Python
  • Web框架:Flask
  • 数据库:MySQL
  • 数据分析:Python数据分析库(如Pandas、NumPy等)
  • 可视化:Echarts
  • 地图:中国地图
  • 前端技术:HTML、CSS、JavaScript

系统界面

系统界面分为多个部分,包括地图展示、数据图表展示、词云展示等。界面设计简洁明了,用户可以通过点击不同的图表和地图区域查看详细信息。

系统优势

  • 数据可视化:通过图表和地图直观展示城镇化率数据,便于用户理解和分析。
  • 实时更新:系统可以实时更新数据,确保用户获取最新的城镇化率信息。
  • 多维度分析:提供地域、省份、年份等多个维度的城镇化率分析,帮助用户全面了解城镇化率的变化和分布情况。

总结

该系统是一个功能强大的中国地级市城镇化率数据可视化分析系统,通过多种图表和地图展示城镇化率数据,帮助用户更直观地了解和分析城镇化率的变化和分布情况。系统使用了多种先进技术,确保了数据的准确性和实时性。

4、核心代码


from flask import Flask, render_template
from config import Config
from views.urbanizationrate import urbanizationrate_blueprint

app = Flask(__name__, template_folder="templates", static_folder="static")
# 从Config配置文件中加载配置信息
app.config.from_object(Config)
# 注册蓝图
app.register_blueprint(urbanizationrate_blueprint)


@app.route('/')
def index():
    # 在这里渲染登录页面模板
    return render_template('login.html')


if __name__ == '__main__':
    # 启动flask服务
    app.run(debug=True, port=5000)

from flask import Blueprint, render_template, redirect, url_for, jsonify
from models import DBJob

db = DBJob.DBMySql()
urbanizationrate_blueprint = Blueprint('urbanizationrate', __name__)


@urbanizationrate_blueprint.route('/')
def index():
    return redirect(url_for('urbanizationrate.urbanizationrate'))


# 大屏展示
@urbanizationrate_blueprint.route('/urbanizationrate')
def urbanizationrate():
    # 数据库总数据量
    sql_count = "SELECT COUNT(zoning_code) FROM `urbanizationrate`;"
    data_count = db.findAll(sql_count)[0][0]

    # 所属地域——东部
    sql_geography_East = '''SELECT `year`, ROUND(AVG(`urbanization_rate`), 3) AS avg_urbanization_rate
                            FROM `urbanizationrate`
                            WHERE `year` IN (2002, 2007, 2012, 2017, 2022)
                            AND `geography` = '东部'
                            GROUP BY `year`, `geography` ORDER BY `year`;'''
    data_geography_East = db.findAll(sql_geography_East)
    geography_East = {}
    for item in data_geography_East:
        geography_East[item[0]] = item[1]

    # 所属地域——中部
    sql_geography_Centralregion = '''SELECT `year`, ROUND(AVG(`urbanization_rate`), 3) AS avg_urbanization_rate
                            FROM `urbanizationrate`
                            WHERE `year` IN (2002, 2007, 2012, 2017, 2022)
                            AND `geography` = '中部'
                            GROUP BY `year`, `geography` ORDER BY `year`;'''
    data_geography_Centralregion = db.findAll(sql_geography_Centralregion)
    geography_Centralregion = {}
    for item in data_geography_Centralregion:
        geography_Centralregion[item[0]] = item[1]

    # 所属地域——西部
    sql_geography_West = '''SELECT `year`, ROUND(AVG(`urbanization_rate`), 3) AS avg_urbanization_rate
                            FROM `urbanizationrate`
                            WHERE `year` IN (2002, 2007, 2012, 2017, 2022)
                            AND `geography` = '西部'
                            GROUP BY `year`, `geography` ORDER BY `year`;'''
    data_geography_West = db.findAll(sql_geography_West)
    geography_West = {}
    for item in data_geography_West:
        geography_West[item[0]] = item[1]

    # 所属省份
    sql_provinces = "SELECT provinces,COUNT(provinces) AS count FROM `urbanizationrate` GROUP BY provinces;"
    data_provinces = db.findAll(sql_provinces)
    provinces = {}
    for item in data_provinces:
        provinces[item[0]] = item[1]

    # 各省份的城镇化率   # WHERE
    #                             #     (`provinces`='新疆维吾尔自治区' OR `provinces`='湖北省' OR `provinces`='江苏省' OR `provinces`='广东省' OR `provinces`='黑龙江省')
    sql_year_provinces = '''SELECT `provinces`, ROUND(AVG(`urbanization_rate`), 5) AS avg_urbanization_rate 
                            FROM 
                                `urbanizationrate`  
                          
                            GROUP BY 
                                `provinces`;'''
    data_year_provinces = db.findAll(sql_year_provinces)
    year_provinces = {}
    for item in data_year_provinces:
        year_provinces[item[0]] = item[1]

    # 所属长江经济带分布情况
    sql_yangtze_river_EconomicBelt = '''SELECT 
                                            CASE `yangtze_river_EconomicBelt`
                                                WHEN 0 THEN '不属于'
                                                WHEN 1 THEN '属于'
                                            END AS yangtze_river_EconomicBelt_status,
                                            COUNT(`yangtze_river_EconomicBelt`) AS count 
                                        FROM 
                                            `urbanizationrate` 
                                        GROUP BY 
                                            `yangtze_river_EconomicBelt`;'''
    data_yangtze_river_EconomicBelt = db.findAll(sql_yangtze_river_EconomicBelt)
    yangtze_river_EconomicBelt = {}
    for item in data_yangtze_river_EconomicBelt:
        yangtze_river_EconomicBelt[item[0]] = item[1]

    # 各年份的城镇化率
    sql_year = '''SELECT `year`, ROUND(AVG(`urbanization_rate`), 5) AS avg_urbanization_rate 
                  FROM `urbanizationrate`  
                  WHERE `year` IN (2002, 2007, 2012, 2017, 2022)
                  GROUP BY `year`;'''
    data_year = db.findAll(sql_year)
    year = {}
    for item in data_year:
        year[item[0]] = item[1]

    # 城市词云展示
    sql_region = "SELECT `region`,COUNT(`region`) AS count FROM `urbanizationrate`  GROUP BY `region`;"
    data_region = db.findAll(sql_region)
    region = {}
    for item in data_region:
        region[item[0]] = item[1]

    return render_template("urbanizationrate.html", data_count=data_count, geography_East=geography_East,
                           geography_Centralregion=geography_Centralregion, geography_West=geography_West,
                           provinces=provinces,
                           year_provinces=year_provinces, yangtze_river_EconomicBelt=yangtze_river_EconomicBelt,
                           year=year, region=region)


# 中国地图
@urbanizationrate_blueprint.route('/china', methods=['GET'])
def china():
    sql_china = '''SELECT region,ROUND(AVG(`urbanization_rate`), 3) AS avg_urbanization_rate 
                    FROM `urbanizationrate` GROUP BY region;'''
    data_china = db.fetchAllDict(sql_china)
    data = [{'name': item['region'].replace("市", ""), 'value': item['avg_urbanization_rate']} for item in data_china]
    return jsonify(data)


🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值