- 博客(103)
- 收藏
- 关注

原创 Matplotlib 完全使用指南
入门阶段:掌握 “导入库→准备数据→绘图→显示 / 保存” 的基础流程,重点练习折线图、柱状图、散点图。进阶阶段:学习样式定制(字体、颜色、布局)、多子图布局、热力图 / 饼图等复杂图表。实战阶段:结合具体场景(如科研论文、商业报告),练习数据交互(Matlab→Python)、矢量图导出、图表美化。通过本文的代码模板,你可以快速复现各类图表,再根据实际需求调整参数(如颜色、标签、尺寸)。如果需要针对特定场景(如 3D 图表、动态可视化)的详细教程,欢迎在评论区留言,我会提供进一步的实战指南!
2025-08-22 00:30:00
1328

原创 网络爬虫技术详解
爬虫是通过编写程序模拟浏览器行为,自动从互联网抓取数据的过程。只能获取浏览器可见的数据(客户端渲染内容)理论上可实现所有浏览器能完成的操作URL→发送请求→获取响应→提取数据→保存数据或URL→发送请求→获取响应→提取新URL(循环爬取)
2025-07-25 11:45:35
1668

原创 Django 中的 ORM 基础语法
Django 通过models.py文件定义模型类,每个模型类对应数据库中的一张表,类属性则对应表中的列。上述代码中,title使用CharField表示固定长度的字符串字段;content通过TextField存储长文本;pub_date采用DateTimeField记录文章发布时间,auto_now_add=True确保在创建记录时自动填充当前时间。Django 的 ORM 语法功能强大且灵活,从基础的数据增删改查,到复杂的关联关系处理、聚合分组查询,再到性能优化,都为开发者提供了高效便捷的解决方案。
2025-05-23 16:25:59
1883

原创 深入解析 HTTP 中的 GET 请求与 POST 请求
GET 请求和 POST 请求作为 HTTP 协议中两种重要的请求方法,各自有着鲜明的特点和适用场景。深入理解它们的工作原理和差异,有助于开发者在 Web 开发过程中做出更合适的选择,构建出高效、安全、稳定的 Web 应用。随着 Web 技术的不断发展,HTTP 协议也在持续演进,但 GET 和 POST 请求依然会在未来的网络通信中扮演重要角色。
2025-05-20 13:51:21
1636
2

原创 正则表达式:从入门到实战的全面指南
正则表达式是由普通字符(例如字母、数字、标点符号等)和特殊字符(也称为元字符,Meta Characters)组成的字符串模式,用于描述一类字符串的共同特征。它就像是一种特殊的 “语言”,通过特定的组合方式来表达对字符串的匹配规则。正则表达式是一种功能强大且用途广泛的文本处理工具,掌握其基本语法和应用技巧对于开发者来说至关重要。本文从正则表达式的基础概念入手,介绍了普通字符、元字符、匹配模式等核心内容,并通过丰富的实例演示了其在数据验证、文本搜索与替换、信息提取等场景中的应用。
2025-04-24 00:30:00
4814

原创 深入探究 TCP 与 UDP 协议:原理、特性及应用
TCP 和 UDP 协议各自有着独特的特点和适用场景。TCP 协议的可靠传输特性使其成为对数据准确性要求极高的应用的首选,而 UDP 协议的快速传输和低开销特性则使其在对实时性要求苛刻的应用中大放异彩。在实际的网络应用开发中,开发者需要根据具体的应用需求,明智地选择合适的协议,以构建出高效、稳定且符合用户需求的网络应用系统。无论是追求数据的精准无误,还是注重通信的实时高效,TCP 和 UDP 协议都为我们提供了有力的工具,帮助我们在网络世界中实现各种精彩的应用。
2025-04-16 13:04:40
1744

原创 面向对象编程基石剖析:封装与继承的深度解析及高级应用
在 Python 中,通过在属性名或者方法名前面增加两个下划线__,定义的就是私有属性或方法。例如:print(f"存款成功,当前余额为{self.__balance}")print(f"取款成功,当前余额为{self.__balance}")else:print("余额不足")print(f"当前账户余额为{self.__balance}")在BankAccount类中,__balance是私有属性,__check_balance是私有方法。。
2025-04-08 10:00:00
2310

原创 掌握这些 Python 函数秘籍,让你的编程效率飙升!
Python 中定义函数使用def关键字,语法格式为,函数体紧跟其后,通过缩进来区分。")函数名需遵循标识符命名规则,它是函数的标识,方便后续调用。参数列表可包含零个或多个参数,用于接收调用时传入的数据。
2025-04-03 10:41:15
1380
2
原创 机器学习知识大纲
对(X = 特征,Y = 标签),模型学习 “输入特征→输出标签” 的映射关系,解决。P(体育|新闻) = P(体育)×P(含“比赛”|体育)×P(不含“股票”|体育)预测类别 = argmax[P(Y) × ΠP(Xᵢ|Y)]概率 = σ(3×含“免费”次数 + 5×风险 - 2)max(间隔) s.t. yᵢ(wXᵢ + b) ≥ 1。(无标签),模型挖掘 “隐藏结构”(聚类、降维等),解决。预测标签 = 多数投票(K个邻居的标签)预测标签 = 多数投票(所有树的预测)投票(分类)或平均(回归)
2025-08-29 00:30:00
640
原创 深度学习知识体系
深度学习是机器学习的重要分支,以 “多层神经网络” 为核心,通过自动学习数据的层级特征,解决传统机器学习难以处理的高维、复杂数据问题(如图像、文本、语音)。本文从五个维度,系统梳理深度学习知识体系,帮助建立完整认知框架。
2025-08-28 12:30:00
554
原创 PyTorch 入门实战:线性回归模型搭建全流程
手动创建权重w和偏置b(需设# 初始化参数:权重w(初始值0.1)、偏置b(初始值0.0)# 假设函数(线性模型)return w * x + b # 对应y=wx+b损失函数:用均方误差(MSE)衡量预测值与真实值的差异;优化器:手动实现随机梯度下降(SGD),按梯度更新参数:# 损失函数:均方误差(MSE)return (y_pred - y_true) ** 2 # 单个样本损失,后续需求和# 优化器:随机梯度下降(SGD)
2025-08-28 00:30:00
754
原创 K-Means 聚类算法原理与 Sklearn 实战
K-Means 是无监督学习的 “入门基石”,它的核心价值在于 “用简单逻辑解决数据分组问题”。
2025-08-27 00:30:00
1324
原创 K 近邻(KNN)算法原理与 Sklearn 实战
KNN 是机器学习的 “入门算法”,但并非 “简单算法”—— 从距离计算的原理到工程优化的细节,都需要结合业务场景灵活调整。
2025-08-26 08:15:00
2169
原创 线性回归原理与 Sklearn 实战
线性回归的本质是找到一条 “最优直线(或超平面)”,拟合特征与目标值之间的线性关系。要理解它,需要先明确 “线性模型的定义”“损失函数的意义” 和 “参数求解的方法” 三个核心问题。线性回归的核心是 “线性组合”—— 目标值是特征的加权和,再加上一个偏置项。根据特征数量的不同,可分为一元线性回归和多元线性回归。当 \(J(\theta)\) 越小,模型拟合效果越好;当 \(J(\theta)=0\) 时,模型完全拟合所有训练样本(实际中几乎不可能,易过拟合)。
2025-08-26 00:30:00
1583
原创 决策树原理与 Sklearn 实战
X 是样本集合的类别空间(比如 “贷款批准”“贷款拒绝”);\(P(x)\) 是某类别 x 在样本集中的概率(比如 100 个样本中 60 个批准,\(P(批准)=0.6\));负号是为了保证结果非负(因为 \(\log_2 P(x)\) 对 \(P(x) \in (0,1)\) 是负数)。D 是当前样本集合;A 是待选择的分裂特征;
2025-08-25 17:01:18
980
原创 【机器学习实战】从理论到代码:KNN、朴素贝叶斯与模型评估全解析
算法核心思想优点缺点适用场景KNN基于距离的懒惰学习1. 原理简单,易实现;2. 无需训练过程,可快速迭代;3. 对异常值不敏感(K>1 时)1. 计算复杂度高(需遍历所有训练样本);2. 对高维数据敏感(距离度量失效);3. 对不平衡数据不友好1. 小规模数据集;2. 低维特征场景(如鸢尾花分类);3. 实时性要求不高的场景朴素贝叶斯基于概率的生成式模型1. 计算速度快(仅需统计概率);2. 对高维数据友好(如文本分类);3. 所需训练样本少。
2025-08-24 00:30:00
1259
原创 机器学习入门核心:从数据处理到特征工程
机器学习的核心流程可概括为:原始数据(杂乱)→pandas清洗(去重、补缺失值)→转换器处理(编码、缩放)→特征工程(降维、特征筛选)→估计器训练(模型拟合)→模型评估与部署其中,数据处理与特征工程是决定模型效果的关键。建议初学者先熟练掌握本文中的编码、缩放、降维等基础技术,再逐步深入复杂模型的学习。pandas 数据清洗(缺失值、异常值处理);特征筛选的高级方法(如相关性分析、递归特征消除);估计器的调参技巧(网格搜索、随机搜索)。
2025-08-23 00:30:00
1333
原创 金融量化入门:Pandas 时间序列处理与技术指标实战(含金叉死叉 / 均线策略)
s1:MA5 < MA30(短期均线在长期均线下方);s2:MA5 > MA30(短期均线在长期均线上方);死叉:当日s1为 True,且前一日s2为 True(MA5 从上方下穿 MA30);金叉:当日s2为 True,且前一日s1为 True(MA5 从下方上穿 MA30)。数据预处理:日期类型转换、索引设置、数据移位;重采样:按业务需求生成周期性数据(如月度买入点);滑动窗口:计算均线等技术指标;策略实现:基于均线的金叉死叉信号筛选。
2025-08-22 12:35:07
1534
原创 Pandas 数据处理实战:DataFrame 核心操作与综合案例
创建:支持 NumPy 数组、字典、外部文件,实战中以文件读取为主。访问:列用[],行用loc/iloc,交叉定位用loc[行,列]。清洗:缺失值用,去重用,排序用。合并:无关联键用concat,有关联键用merge,按需选择。实战:通过 “数据读取→合并→清洗→计算→排序” 的流程,可解决大部分结构化数据分析问题。掌握 DataFrame 后,你将能轻松应对日常数据处理需求,为后续的数据分析和可视化打下坚实基础。
2025-08-21 00:30:00
776
原创 一文吃透 Pandas 核心数据类型:Series 详解与实战
结构:由 “索引 + 数据” 组成,支持显式与隐式双重索引。创建:支持列表、NumPy 数组、字典等多种方式,灵活适配不同数据来源。访问:显式索引用loc(前闭后闭),隐式索引用iloc(前闭后开),避免混淆。运算:自动按索引对齐,缺失值可通过fill_value填充,为后续数据清洗打下基础。掌握 Series 是学习 Pandas 二维结构 DataFrame 的前提,下一篇文章将带你深入学习 DataFrame 的使用,敬请关注!
2025-08-20 13:10:26
822
原创 NumPy:Python 科学计算的基石
NumPy 作为 Python 科学计算的基础库,提供了高效的数组操作功能,极大地提高了数据处理和数学运算的效率。通过本文的介绍,读者应该对 NumPy 的基本概念和用法有了较为全面的了解。在实际应用中,熟练掌握 NumPy 将为数据分析、机器学习、科学计算等领域的工作带来极大的便利。希望本文能够帮助读者快速入门 NumPy,并在后续的学习和工作中不断深入探索其更多的高级功能。
2025-08-19 15:41:55
923
原创 Django 请求生命周期
请求到达时记录开始时间# 响应返回前计算耗时# 将耗时添加到响应头之后在的MIDDLEWARE中添加该中间件,所有请求的响应头都会带上字段,记录处理耗时。Django 的请求生命周期是一个 “线性且可扩展” 的流程,从请求到达 Web 服务器到响应返回客户端,每一个阶段都有明确的职责和扩展点。掌握这个流程,不仅能帮助你快速定位开发中的问题(如中间件拦截了请求、路由匹配错误),还能让你更合理地使用 Django 的特性(如中间件实现全局功能、类视图提高代码复用)。
2025-08-18 13:52:11
1060
原创 Python 对称与非对称加密全解析(二)
哈希与编码技术是数据处理的基础工具,侧重完整性与格式转换;对称与非对称加密则聚焦数据机密性,需根据场景平衡效率与安全性。掌握这些技术,能有效提升系统的数据安全能力,应对网络传输与存储中的风险。
2025-08-09 00:30:00
282
原创 Python 哈希算法与编码技术(一)
在数据处理与网络传输中,哈希算法和编码技术是保障数据完整性、安全性的基础工具。本文将结合 Python 实例,深入解析哈希算法(如 MD5、SHA256)的特性、编码解码(URL 编码、Base64)的应用,以及如何在实际开发中合理使用这些技术。
2025-08-08 00:30:00
365
原创 MongoDB 从入门到实战:一文掌握非关系型数据库核心技能
MongoDB 作为非关系型数据库的佼佼者,以其灵活的建模和高性能特性,成为大数据和分布式系统的首选。本文从基础概念到实战操作,覆盖了 MongoDB 的核心技能,包括 CRUD、查询进阶、聚合分析、索引优化和 Python 交互。建议初学者结合实际场景练习(如用户数据存储、日志分析),通过多写多练掌握其精髓。如需深入,可进一步学习 MongoDB 的分片集群和高可用配置。参考资料电影天堂-2025年最新高清热播电影-好看的电视剧免费--
2025-08-04 00:30:00
731
原创 【容器化部署】用 Docker部署 FastAPI+Vue 前后端分离项目
通过 Docker 部署 FastAPI+Vue 项目,不仅规避了环境配置的繁琐,还能保证开发环境与生产环境的一致性。本文步骤覆盖从本地配置到服务器部署的全流程,核心在于理解 "镜像构建→上传→容器启动" 的逻辑。后续如需更新项目,只需重新构建镜像并替换容器即可,极大简化了维护成本。容器化部署已成为现代应用的标配,掌握这一技能将显著提升你的开发效率。
2025-08-03 00:30:00
797
原创 从开发到生产:FastAPI+Vue 项目部署方案深度对比(阿里云 ECS vs Ubuntu 虚拟机)
开发测试期:毫不犹豫选 Ubuntu 虚拟机。零成本、高灵活的特性,能让你专注于功能迭代,而非部署细节;生产上线期:坚定选择阿里云 ECS。公网可达性、稳定性和扩展性,是支撑项目走向用户的核心保障;过渡阶段:可采用「双环境并行」策略 —— 虚拟机用于日常开发,ECS 用于预发布测试,通过自动化脚本同步代码,兼顾效率与安全。部署方案没有绝对的优劣,只有是否适合当前阶段的选择。理解两种方案的技术差异和适用场景,才能让你的 FastAPI+Vue 项目在每个阶段都高效运行。
2025-08-02 00:30:00
1100
原创 【本地开发必备】Ubuntu 虚拟机部署 FastAPI+Vue 前后端分离项目超详细步骤
Ubuntu 虚拟机部署适合本地开发测试,无需购买云服务器,且操作灵活。但需注意虚拟机依赖本地物理机运行,仅局域网可访问,不适合生产环境。
2025-08-01 00:30:00
1018
原创 【保姆级教程】阿里云 ECS 服务器部署 FastAPI+Vue 前后端分离项目完整指南
通过本文步骤,你已成功将 FastAPI+Vue 项目部署到阿里云 ECS 服务器。阿里云的公网访问能力和稳定性,使其适合生产环境;后续可根据需求升级配置或添加 HTTPS 证书,进一步提升项目可用性。
2025-07-31 10:22:00
1474
原创 Vue3 项目中集成百度地图 API 实现地址自动提取经纬度(附完整代码)
/ 引入Vue相关API// 地理编码状态管理// 控制"获取坐标"按钮的加载状态// 表单数据(订单信息)user_address: "", // 用户地址user_longitude: null, // 经度user_latitude: null, // 纬度// 其他表单字段...});本文详细讲解了如何在 Vue3 项目中集成百度地图 API,实现地址自动提取经纬度功能。
2025-07-30 00:30:00
1026
原创 Selenium 自动化测试与爬虫实战:从环境搭建到高级应用
Selenium 凭借对浏览器的完全控制能力,成为处理动态网页和复杂交互的首选工具。从环境搭建到元素定位、交互操作,再到验证码处理和懒加载应对,掌握这些技巧能让你在自动化测试和爬虫开发中更加得心应手。实际使用中,需结合场景灵活运用,并注意规避反爬机制,平衡效率与稳定性。
2025-07-29 00:30:00
1528
原创 图片懒加载技术:原理、实现与优化场景
仅当图片进入浏览器当前可视区域时,才会触发加载请求。通过减少首屏加载的图片数量,降低初始网络请求压力,从而提升页面加载速度和用户体验。举个简单的例子:一个包含 100 张图片的长网页,用户打开时仅加载当前屏幕内的 3-5 张图片;当用户向下滚动页面,其他图片进入视野后再逐个加载。这种方式避免了 “一次性加载全部资源” 的性能问题。图片懒加载通过 “按需加载” 的思路,有效减少了首屏资源请求,是前端性能优化的必备技术。实现方式从早期的滚动事件监听,到现代的。
2025-07-28 09:44:18
682
原创 数据解析技术总结
在数据处理和爬虫领域,常用的数据解析技术包括 JSON 处理、正则表达式、BeautifulSoup(bs4)、XPath 和 JSONPath。
2025-07-26 00:30:00
904
原创 FastAPI 进阶:路由、参数处理与数据库集成实战
"""用户模型"""username = fields.CharField(max_length=50, unique=True, description="用户名")password = fields.CharField(max_length=100, description="密码哈希")email = fields.CharField(max_length=100, unique=True, description="邮箱")
2025-07-24 00:30:00
390
原创 FastAPI 深度解析:从入门到实战的现代 Python API 开发框架
在 Python Web 框架领域,FastAPI 的出现犹如一股清流。作为一个基于Starlette和Pydantic的现代框架,它彻底改变了开发者对 Python Web 性能的认知。自 2018 年底发布以来,凭借其卓越的性能和开发效率,迅速成为前后端分离项目的首选框架。
2025-07-23 10:25:50
1075
原创 Redis 深度解析:特点、优势、应用场景及实操指南
在众多 NoSQL 数据库中,Redis 以其卓越的性能和丰富的功能脱颖而出,成为开发者手中不可或缺的工具。本文将从 Redis 的特点、优势、应用场景以及具体的代码操作和主从配置等方面,对 Redis 进行全面深入的解析。。
2025-07-19 00:30:00
606
原创 NoSQL 数据库:特点、主流产品及适用场景
类型:文档型 NoSQL 数据库。特点:以 BSON(一种类似 JSON 的二进制格式)文档形式存储数据,支持复杂的查询操作、索引、聚合等功能。具有良好的可扩展性和灵活性,能够轻松应对海量数据的存储和查询。擅长场景:非常适合用于 CMS 系统(内容管理系统),因为 CMS 系统中需要存储大量的非结构化和半结构化内容,如文章、图片、视频的描述信息等,MongoDB 能够高效地对这些数据进行管理和查询。此外,在电商平台的商品信息管理、社交应用的用户动态存储等场景中也有广泛应用。
2025-07-18 00:30:00
1409
原创 DRF 序列化器深度解析:验证、保存与高级用法
id = serializers.IntegerField(read_only=True) # 只读字段序列化示例序列化器是 DRF 的灵魂,掌握其验证和保存机制,能有效保证 API 数据的安全性和一致性。合理使用模型序列化器和自定义验证器,可大幅提升开发效率。下一篇将讲解 DRF 的跨域问题解决及接口权限控制,欢迎持续关注。
2025-07-17 00:30:00
735
原创 Django REST Framework 入门指南:从 0 到 1 实现 RESTful API
RESTful API 是一种软件架构风格,通过 HTTP 方法(GET/POST/PUT/DELETE)对资源进行操作,具有无状态、可缓存等特点。DRF 则是 Django 生态中用于构建 RESTful API 的利器,它提供了序列化、认证、权限控制等功能,让开发者无需重复造轮子。name = models.CharField(max_length=100, verbose_name="姓名")age = models.IntegerField(verbose_name="年龄")
2025-07-16 16:44:20
1133
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人