P1102 A-B 数对

题目描述

给出一串正整数数列以及一个正整数 C,要求计算出所有满足 A−B=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。

输入格式

输入共两行。

第一行,两个正整数 N,C。

第二行,N 个正整数,作为要求处理的那串数。

输出格式

一行,表示该串正整数中包含的满足 A−B=C 的数对的个数。

输入输出样例

输入 

4 1
1 1 2 3

输出 

3

说明/提示

对于 75% 的数据,1≤N≤2000。

对于 100% 的数据,1≤N≤2×105,0≤ai​<230,1≤C<230。

代码

无注释版

#include<bits/stdc++.h>
using namespace std;
const int N=200010;
long long a[N],n,c,cnt,k;
int main(){
	cin>>n>>c;
	for(int i=1;i<=n;i++) cin>>a[i];
	sort(a+1,a+1+n);
	for(int i=1;i<n;i++)
	{
		int l=i+1,r=n;
		while(l<r) 
		{
			int mid=l+r>>1;
			if(a[mid]-a[i]>=c) r=mid;	
			else l=mid+1;
		}
		if(a[l]-a[i]==c) k=l; 
		else continue;
		l=k-1,r=n;	
		while(l<r) 
		{
			int mid=l+r+1>>1;
			if(a[mid]<=a[k]) l=mid; 
			else r=mid-1;
		}
		cnt+=l-k+1;
	}
	cout<<cnt;
} 

有注释版

#include<bits/stdc++.h>  // 引入标准库,包含常用的C++库
using namespace std;  // 使用标准命名空间

const int N = 200010;  // 定义常量 N,表示数组的最大大小

long long a[N], n, c, cnt, k;  // 定义变量:a 数组存储输入的数列,n 为数列的长度,c 为目标差值,cnt 用来记录符合条件的数对个数,k 用来帮助二分查找

int main() {
    cin >> n >> c;  // 输入序列的长度 n 和目标差值 c
    
    // 输入数列 a
    for (int i = 1; i <= n; i++) {
        cin >> a[i];  // 逐个读取数列中的元素
    }
    
    // 对数列 a 进行排序
    sort(a + 1, a + 1 + n);  // 排序是为了进行二分查找
     
    // 遍历数列中的每个元素,寻找满足条件的数对
    for (int i = 1; i < n; i++) {
        int l = i + 1, r = n;  // 设置二分查找的左右边界,l 是当前元素的下一个元素,r 是数列的末尾
        
        // 在区间 [l, r] 上进行二分查找,查找满足 a[j] - a[i] >= c 的最小 j
        while (l < r) {
            int mid = (l + r) >> 1;  // 计算中间值
            if (a[mid] - a[i] >= c)  // 如果当前中间值与 a[i] 的差大于等于 c,说明 j 可能是当前值,缩小右边界
                r = mid;
            else  // 否则,说明 j 的值偏小,增加左边界
                l = mid + 1;
        }
        
        // 如果找到的 l 满足 a[l] - a[i] == c,表示找到了一个合法的数对,记录下 l
        if (a[l] - a[i] == c) 
            k = l;  // 记录下满足条件的最小 j
        else 
            continue;  // 否则跳过此次循环

        // 此时 l=k,进行第二次二分查找,寻找与 a[i] 差值为 c 的数的右边界
        l = k - 1, r = n;  // 设置新的二分查找范围
        
        // 在区间 [l, r] 上进行二分查找,查找 a[j] <= a[k] 的最大 j
        while (l < r) {
            int mid = (l + r + 1) >> 1;  // 计算中间值
            if (a[mid] <= a[k])  // 如果当前值小于等于 a[k],说明可以继续扩大右边界
                l = mid;
            else  // 否则,缩小右边界
                r = mid - 1;
        }
        
        // 将符合条件的数对的个数加到 cnt 中
        cnt += l - k + 1;  // 计算从 k 到 l 之间有多少个数与 a[i] 形成差值为 c 的数对
    }
    
    cout << cnt;  // 输出最终符合条件的数对的个数
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值