题目描述
给出一串正整数数列以及一个正整数 C,要求计算出所有满足 A−B=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个正整数 N,C。
第二行,N 个正整数,作为要求处理的那串数。
输出格式
一行,表示该串正整数中包含的满足 A−B=C 的数对的个数。
输入输出样例
输入
4 1
1 1 2 3
输出
3
说明/提示
对于 75% 的数据,1≤N≤2000。
对于 100% 的数据,1≤N≤2×105,0≤ai<230,1≤C<230。
代码
无注释版
#include<bits/stdc++.h>
using namespace std;
const int N=200010;
long long a[N],n,c,cnt,k;
int main(){
cin>>n>>c;
for(int i=1;i<=n;i++) cin>>a[i];
sort(a+1,a+1+n);
for(int i=1;i<n;i++)
{
int l=i+1,r=n;
while(l<r)
{
int mid=l+r>>1;
if(a[mid]-a[i]>=c) r=mid;
else l=mid+1;
}
if(a[l]-a[i]==c) k=l;
else continue;
l=k-1,r=n;
while(l<r)
{
int mid=l+r+1>>1;
if(a[mid]<=a[k]) l=mid;
else r=mid-1;
}
cnt+=l-k+1;
}
cout<<cnt;
}
有注释版
#include<bits/stdc++.h> // 引入标准库,包含常用的C++库
using namespace std; // 使用标准命名空间
const int N = 200010; // 定义常量 N,表示数组的最大大小
long long a[N], n, c, cnt, k; // 定义变量:a 数组存储输入的数列,n 为数列的长度,c 为目标差值,cnt 用来记录符合条件的数对个数,k 用来帮助二分查找
int main() {
cin >> n >> c; // 输入序列的长度 n 和目标差值 c
// 输入数列 a
for (int i = 1; i <= n; i++) {
cin >> a[i]; // 逐个读取数列中的元素
}
// 对数列 a 进行排序
sort(a + 1, a + 1 + n); // 排序是为了进行二分查找
// 遍历数列中的每个元素,寻找满足条件的数对
for (int i = 1; i < n; i++) {
int l = i + 1, r = n; // 设置二分查找的左右边界,l 是当前元素的下一个元素,r 是数列的末尾
// 在区间 [l, r] 上进行二分查找,查找满足 a[j] - a[i] >= c 的最小 j
while (l < r) {
int mid = (l + r) >> 1; // 计算中间值
if (a[mid] - a[i] >= c) // 如果当前中间值与 a[i] 的差大于等于 c,说明 j 可能是当前值,缩小右边界
r = mid;
else // 否则,说明 j 的值偏小,增加左边界
l = mid + 1;
}
// 如果找到的 l 满足 a[l] - a[i] == c,表示找到了一个合法的数对,记录下 l
if (a[l] - a[i] == c)
k = l; // 记录下满足条件的最小 j
else
continue; // 否则跳过此次循环
// 此时 l=k,进行第二次二分查找,寻找与 a[i] 差值为 c 的数的右边界
l = k - 1, r = n; // 设置新的二分查找范围
// 在区间 [l, r] 上进行二分查找,查找 a[j] <= a[k] 的最大 j
while (l < r) {
int mid = (l + r + 1) >> 1; // 计算中间值
if (a[mid] <= a[k]) // 如果当前值小于等于 a[k],说明可以继续扩大右边界
l = mid;
else // 否则,缩小右边界
r = mid - 1;
}
// 将符合条件的数对的个数加到 cnt 中
cnt += l - k + 1; // 计算从 k 到 l 之间有多少个数与 a[i] 形成差值为 c 的数对
}
cout << cnt; // 输出最终符合条件的数对的个数
}