题目描述
给定一张点数为 n 的有向图的邻接矩阵,图中不包含自环,求该有向图的传递闭包。
一张图的邻接矩阵定义为一个 n×n 的矩阵 A=(aij)n×n,其中
一张图的传递闭包定义为一个 n×n 的矩阵 B=(bij)n×n,其中
输入格式
输入数据共 n+1 行。
第一行一个正整数 n。
第 2 到 n+1 行每行 n 个整数,第 i+1 行第 j 列的整数为 aij。
输出格式
输出数据共 n 行。
第 1 到 n 行每行 n 个整数,第 i 行第 j 列的整数为 bij。
输入输出样例
输入
4
0 0 0 1
1 0 0 0
0 0 0 1
0 1 0 0
输出
1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1
说明/提示
对于 100% 的数据,1≤n≤100,保证 aij∈{0,1} 且 aii=0。
代码
无注释版
#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[110][110];
signed main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>a[i][j];
if(a[i][j]==0) a[i][j]=INT_MAX;
}
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(a[i][j]>a[i][k]+a[k][j]){
a[i][j]=a[i][k]+a[k][j];
}
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(a[i][j]==INT_MAX){
cout<<"0 ";
}
else cout<<"1 ";
}
cout<<"\n";
}
}
有注释版
#include<bits/stdc++.h> // 引入头文件,包含了所有标准库
using namespace std; // 使用标准命名空间
#define int long long // 将 int 定义为 long long,以处理大数据
int a[110][110]; // 定义一个二维数组 a 用于存储邻接矩阵,最大支持 110 个点
signed main() { // 主函数
int n; // 定义点的数量 n
cin >> n; // 输入图的点数
// 输入邻接矩阵
for (int i = 1; i <= n; i++) { // 外循环:遍历每一行
for (int j = 1; j <= n; j++) { // 内循环:遍历每一列
cin >> a[i][j]; // 输入每个点之间是否有边
if (a[i][j] == 0) // 如果没有边(值为 0),则将其设置为 INT_MAX,表示没有路径
a[i][j] = INT_MAX;
}
}
// 使用 Floyd-Warshall 算法计算传递闭包
for (int k = 1; k <= n; k++) { // 遍历每一个中间点
for (int i = 1; i <= n; i++) { // 遍历每一个起始点
for (int j = 1; j <= n; j++) { // 遍历每一个终点
// 如果从 i 到 j 的直接路径比通过 k 点的路径更长,就更新路径
if (a[i][j] > a[i][k] + a[k][j]) {
a[i][j] = a[i][k] + a[k][j];
}
}
}
}
// 输出传递闭包结果
for (int i = 1; i <= n; i++) { // 遍历每一行
for (int j = 1; j <= n; j++) { // 遍历每一列
// 如果 a[i][j] 是 INT_MAX,表示没有路径,输出 0;否则输出 1,表示有路径
if (a[i][j] == INT_MAX) {
cout << "0 "; // 没有路径,输出 0
} else {
cout << "1 "; // 有路径,输出 1
}
}
cout << "\n"; // 每输出一行后换行
}
return 0; // 返回 0,表示程序执行成功
}