1. 数据集的划分通常涉及将数据分为训练集、验证集和测试集。训练集用于训练模型,验证集用于调整模型的超参数并防止过拟合,而测试集用于评估模型在未见过的数据上的泛化能力。
2. 过拟合是指模型在训练数据上表现很好,但在新的、未见过的数据上表现不佳的现象。这是因为模型过于复杂,以至于它“记住”了训练数据,而不是从中学习到有用的模式。解决过拟合的方法包括:
- 简化模型:减少模型的复杂度,例如减少神经网络的层数或节点数。
- 正则化:通过添加一个惩罚项来限制模型的复杂度。
- 使用更多的数据:如果可能的话,增加训练数据的数量可以帮助减轻过拟合。
- 交叉验证:使用交叉验证来更好地估计模型的泛化能力。
- 早停法:在验证集的性能不再提高时停止训练,以防止过拟合。
- Dropout:在训练过程中随机关闭一些神经元,以减少模型对任何特定神经元的依赖性。
- 集成方法:如Bagging和Boosting,可以组合多个模型的预测来减少过拟合的风险。