广东专插本-无穷小量的比较及间断点

目录

无穷小量的比较:

极限计算的类型和计算技巧:

函数的间断点:

一、第一类间断点

二、第二类间断点

三、总结:第一类间断点(左右极限都存在),第二类间断点(左右极限至少有一个不存在)。


无穷小量的比较:

1、 \lim \frac{A}{B}= 0,则称A是比B高阶的无穷小量。

2、\lim \frac{A}{B}= \propto,则称A是比B低阶的无穷小量。

3、\lim \frac{A}{B}=\mathbb{C}(C为常数且不等于0),则称A是比B同阶的无穷小量。

4、\lim \frac{A}{B}= 1,则称A是比B等阶的无穷小量。

极限计算的类型和计算技巧

(1)无穷小  ×  有界函数   =  无穷小

(2)极限的计算中带根号,先判断能否抓大头,若不能用,则用根式有理化。

(3)无穷小×无穷大(0×∞)不能直接判断结果,把相对简单的那部分转化为倒数,如\frac{​{0}}{\frac{1}{\infty }}=\frac{0}{0}

\frac{\infty }{\frac{1}{0}}=\frac{\infty }{\infty },然后使用洛必达法则,对分子分母求导。

(4)无穷大(+/-)无穷大不能直接判断结果,一般需要通分合并再判断类型

(5)幂指函数求极限,可用对数恒等式。

                                           

函数的间断点

如果函数f(x)在x0处不连续,则称点x0为f(x)的间断点或不连续点。

一、第一类间断点

可去间断点:左极限=右极限的间断点x0称为f(x)的可去间断点。

跳跃间断点:左极限\neq右极限的间断点x0称为f(x)的跳跃间断点。

二、第二类间断点

无穷间断点:左极限和右极限至少又一个为∞时,点x0称为f(x)的无穷间断点。

振荡间断点:左右极限振荡不存在的间断点,叫做振荡间断点,其中振荡是不可以解出的答案,极限完全不存在

三、总结:第一类间断点(左右极限都存在),第二类间断点(左右极限至少有一个不存在)。

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值