目录
三、总结:第一类间断点(左右极限都存在),第二类间断点(左右极限至少有一个不存在)。
无穷小量的比较:
1、 ,则称A是比B高阶的无穷小量。
2、,则称A是比B低阶的无穷小量。
3、(C为常数且不等于0),则称A是比B同阶的无穷小量。
4、,则称A是比B等阶的无穷小量。
极限计算的类型和计算技巧:
(1)无穷小 × 有界函数 = 无穷小
(2)极限的计算中带根号,先判断能否抓大头,若不能用,则用根式有理化。
(3)无穷小×无穷大(0×∞)不能直接判断结果,把相对简单的那部分转化为倒数,如或
,然后使用洛必达法则,对分子分母求导。
(4)无穷大(+/-)无穷大不能直接判断结果,一般需要通分合并再判断类型
(5)幂指函数求极限,可用对数恒等式。
函数的间断点:
如果函数f(x)在x0处不连续,则称点x0为f(x)的间断点或不连续点。
一、第一类间断点
可去间断点:左极限=右极限的间断点x0称为f(x)的可去间断点。
跳跃间断点:左极限右极限的间断点x0称为f(x)的跳跃间断点。
二、第二类间断点
无穷间断点:左极限和右极限至少又一个为∞时,点x0称为f(x)的无穷间断点。
振荡间断点:左右极限振荡不存在的间断点,叫做振荡间断点,其中振荡是不可以解出的答案,极限完全不存在
三、总结:第一类间断点(左右极限都存在),第二类间断点(左右极限至少有一个不存在)。