数据预处理与实践(第一期)

本文介绍了Python科学计算的基础工具,包括Numpy的安装、数组操作和数学函数,SciPy的安装、Linalg模块以及文件操作,以及Pandas的安装、数据结构和数据统计方法。这些库为数据预处理和科学计算提供了强大支持。
摘要由CSDN通过智能技术生成

Python科学计算工具

1.Numpy

表达N维数组的最基础库 提供直接的矩阵运算、广播函数、线性代数等功能

1.1Numpy的安装和特点

Numpy的安装

方法1️⃣:Anaconda已经集成了NumPy,读者在DOS环境下查看:conda list 方法2️⃣:可以通过pip自动安装,执行如下命令:pip install numpy

方法3️⃣:在GitHub上下载NumPy源码(*https://github.com/numpy/numpy*),然后在源码根目录下执行如下命令:python setup.py install

安装完成后,检测是否成功。首先启动Sublime,然后按F6键进入Python环境,最后输入import numpy,得到以下状态即表示安装成功。如下图所示。

Numpy的特点

NumPy通常与SciPy(Scientific Python)和Matplotlib(绘图库)一起使用,这种组合广泛用于替代MatLab,是一个强大的科学计算环境,有助于我们通过Python学习数据科学或者机器学习。

  • 它支持大量的维度数组与矩阵运算
  • 提供大量的数学函数库

1.2Numpy数组

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值