【C++】全面解剖搜索二叉树(一整个拿捏住)

🆗
.

💕 C++专栏 ✔
👉 个人主页 👈


前言

本篇归属于C++专栏,具体讲解什么是二叉搜索树(搜索二叉树),如何简单实现它?

一、二叉搜索树概念

二叉搜索树又称二叉排序树,它或者是一棵空树或者是具有以下性质的二叉树:

  1. 若它的左子树不为空,则子树上所有节点的值都于根节点的值
  2. 若它的右子树不为空,则子树上所有节点的值都于根节点的值
  3. 它的左右子树也分别为二叉搜索树

总的来说,搜索二叉树得满足左子树小于根结点的值右子树大于根结点的值
在这里插入图片描述

第一个不满足搜索二叉树的原则,结点10的左子树的值小于10是🆗的,但是右子树的值也小于10,如果要满足二叉搜索树就得大于10,所以第一棵树不是二叉搜索树,第二棵树是✔的,满足搜索二叉树原则

二、二叉搜索树的常见操作及其实现

以这组数据作为案例:int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};
将上面数据按照二叉搜索树原则插入后的图形化结构
在这里插入图片描述

以下的所有操作的实现均按照K模型的二叉搜索树来讲解的

下面这个是二叉搜索树的结点类模板

template<class K>
struct TreeNode
{
	TreeNode<K>* _left;
	TreeNode<K>* _right;
	K _key;

	TreeNode(const K& key)
		:_left(nullptr)
		,_right(nullptr)
		,_key(key)
	{}
};

下面这个是二叉搜索树的类模板

template<class K>
class BSTree
{
	typedef BSTreeNode<K> Node;
public:
	bool Insert(const K& key);
	Node* Find(const K& key);
	bool Erase(const K& key);
	void _InOrder(Node* root);
	void InOrder();
private:
	Node* _root = nullptr;
};

1.二叉搜索树的查找

1.1 二叉搜索树的查找原则

a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b、最多查找高度次,走到到空,还没找到,这个值不存在。

1.2 实现二叉搜索树的查找

//找到了返回该结点的指针,没找到返回nullptr
Node* find(const K& key)
{
	Node* cur = _root;//为root创建一个临时对象,以便循环遍历,避免更改root结点
	while (cur)
	{
		if (key < cur->_key)//如果 key(查找的值)<当前结点的值
		{
			cur = cur->_left;//就往该结点的左子树走
		}
		else if (key > cur->_key)//如果 key(查找的值)>当前结点的值
		{
			cur = cur->_right;//就往该结点的右子树走
		}
		else
		{
			return cur;//找到了返回该结点的指针
		}
	}
	return nullptr;//走到这说明没找到,返回nullptr
}

2.二叉搜索树的插入

2.1 二叉搜索树的插入原则

插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给root指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

2.2 实现二叉搜索树的插入

在这里插入图片描述

在这颗搜索二叉树上再插入16这个结点,首先和根结点8比较,它比8大,所以往8的右子树走,遇到了10这个结点,但是16依旧是大的那个,所以它要往10结点的右子树走,同样的14也是如此,走到14的左子树发现为空,可以进行插入,于是就在这个位置插入了,下面我们实现一下这个插入思路

bool insert(const K& key)
{
	if (_root == nullptr)//如果根节点为空,则让插入的值为根
	{
		_root = new Node(key);
		return true;
	}
	Node* parent = nullptr;//为当前结点设一个父亲结点,以便后续的指向关系不混乱
	Node* cur = _root;
	while (cur)
	{
		if (key < cur->_key)
		{
			parent = cur;//每次都保存一下当前结点的父亲
			cur = cur->_left;
		}
		else if (key > cur->_key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;//如果有相同的结点则不插入,返回false
		}
	}
	cur = new Node(key);//此时cur已经为空,插入当前位置即可
	if (key< parent->_key)//让cur的父亲和cur的值进行比较,确定cur在左还是右
		parent->_left = cur;
	else
		parent->_right = cur;
	return true;//走到这说明插入成功
}

3.二叉搜索树的删除

3.1 二叉搜索树的删除原则

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四情况:
a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点

看起来待删除节点有4中情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程如下:

可以合并的原因?
不管删除结点有一个左孩子还是右孩子,你都会让被删除结点的父亲指向它的孩子,如果你没孩子就是指向空,所以合并起来不影响什么

情况b:要删除的结点只有左孩子结点
删除该结点且使被删除节点的父结点指向被删除节点的左孩子结点

情况c:要删除的结点只有右孩子结点
删除该结点且使被删除节点的父结点指向被删除结点的右孩子结点

情况d:要删除的结点有左、右孩子结点
此时我们用替换法

讲替换法之前我们首先要知道搜索二叉搜的一个特性:,一棵搜索二叉树的最左结点最小,最右结点最大

替换法: 让删除结点的值和该结点的右子树的最小值进行替换,替换之后,就转化成了上面两种情况(这里你用左子树的最大值替换也可以,但一般用右子树的最小值)

3.2 实现二叉搜索树的删除

bool erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (key < cur->_key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (key > cur->_key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			//找到了开删
			//1. 删除结点只有一个左孩子
			if (cur->_right == nullptr)
			{
				//1-1.删除结点是它父亲的左孩子
				if (parent->_left == cur)
					parent->_left = cur->_left;
				else//1-2.删除结点是它父亲的右孩子
					parent->_right = cur->_left;
				delete cur;
			}
			//2. 删除结点只有一个右孩子
			else if (cur->_left == nullptr)
			{
				//2-1.删除结点是它父亲的左孩子
				if (parent->_left == cur)
					parent->_left = cur->_right;
				else//2-2.删除结点是它父亲的右孩子
					parent->_right = cur->_right;
				delete cur;
			}
			//2.删除结点有两个孩子--替换法
			else
			{
				//Node* RightMinParent = nullptr;这里切记不能赋值为空,当删除结点为根结点时,这里会出现空指针解引用的情况
				Node* RightMinParent = cur;
				Node* RightMin = cur->_right;
				while (RightMin->_left)//当RightMin的左为空时,RightMin就是最小的那个
				{
					RightMinParent = RightMin;
					RightMin = RightMin->_left;
				}
				swap(RightMin->_key, cur->_key);//交换被删除结点的值和被删除结点右子树的最小值
				if (RightMinParent->_left == RightMin)
				{
					RightMinParent->_left = RightMin->_right;
				}
				else
					RightMinParent->_right = RightMin->_right;
				delete RightMin;
			}
			return true;
		}
	}
	return false;
}

三、二叉搜索树的应用

K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:

  • 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
  • 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:

  • 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word,chinese>就构成一种键值对;
  • 再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出 现次数就是<word, count>就构成一种键值对。

四、二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
在这里插入图片描述
平均时间复杂度:O(log n) 删除操作包括找到要删除的节点、处理其子节点(如果有的话),以及可能的重新平衡操作(尽管标准的BST不需要严格平衡)。在最平衡的情况下,找到节点的路径长度是O(log n)。
最坏时间复杂度:O(n) 在最坏的情况下(如树退化为链表),每次删除都需要遍历整棵树,时间复杂度为线性级别。

问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插入关键码,二叉搜索树的性能都能达到最优?我们后续讲到AVL树和红黑树就会解决这个问题


搜索二叉树就到这里,有问题的宝子可以留言评论哦,我会持续维护的👀

  • 37
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 21
    评论
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值