3.8什么是算法?-----解决问题的方法

本文介绍了利用累加法和等差数列求和公式,探讨了算法优劣的评判标准——时间复杂度,并通过示例讲解了如何计算和理解不同复杂度级别的算法,如O(n),O(n^2),O(1),和O(logn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

累加法:一个一个的加

利用等差数列求和公式直接算出答案

如何评判算法的优劣--------通过时间复杂度来进行判别

算法的时间复杂度是如何计算出来的?

时间复杂度是研究数量总量N和算法执行次数Y之间的关系

y = an +b(a是西数,b是常数),如果n非常大---->y=n(算法执行次数和数据总量直接相关)------>O(n)

y=an^2+bn+c(ab是系数,c是常数),如果n非常大----->y=n^2(算法执行次数和数据总量的平法直接相关)----->O(n^2)

y=a(a是常数),------->算法的执行次数和数据总量没有任何关系------->O(1)

y=logn----->算法的执行次数和数据总量存在log别的关系------->O(logn)

void fun(int n){

iint i = 1;

while(i<n){
i = i*2;                                                            O(logn)

     }

     }

时间复杂度是研究:数据总量n和执行次数y之间的关系

i = 1;
i = 1;
i = 4;
i = 8;
i = 16;
----
i = 2^(y-1) = n
2^y = n-------->y = log2n
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/m0_74793021/article/details/136562540

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值