- 博客(7)
- 收藏
- 关注
原创 (附代码)语义分割论文写作保姆级教程:数据集处理的全方位解析
本文介绍了语义分割任务中的数据处理流程,包括掩码值提取、数据集划分、背景与未标注区域处理以及性能评估。重点讨论了如何提取掩码中的唯一值、如何合理划分训练集与验证集、如何排除背景干扰以及如何计算mIoU等性能指标。通过这些步骤,确保数据处理的准确性和实验结果的可靠性。
2025-01-26 19:23:05
835
原创 (附代码)保姆级教程:中文语音识别自录制数据处理:从 WAV 和 WRD 文件生成数据集
本文介绍了如何使用Python对语音识别数据进行预处理,具体步骤包括从madata数据集中提取音频(WAV)和对应的文字(WRD)文件,生成词汇表,并将文字映射到字符索引。通过创建字符映射字典,将数据处理成适用于深度学习训练的格式,最终保存为JSON文件。文章还提供了生成文件列表的功能,方便后续的训练和测试数据管理。此流程适用于语音识别任务中的数据预处理阶段,帮助提升模型训练的效率和准确性。
2025-01-03 10:29:02
1645
2
原创 (附代码)从零构建城市街景语义分割工具:完整超详细教程
本教程教你如何构建一个基于 PyTorch 的城市街景语义分割工具。它可以上传图片、调用深度学习模型进行分割、展示结果并提供类别说明。
2024-12-29 16:30:45
1896
5
原创 (附代码)全面解析语义分割数据增强:从基础到进阶的详细实现
本文系统介绍了语义分割任务中的数据增强方法,从基础增强(翻转、旋转、平移、亮度调整等)到进阶增强(Mosaic、MixUp、HSV 调整、透视变换、Copy-Paste等),通过增加数据多样性和复杂性,显著提升模型的泛化能力和鲁棒性,并附带完整代码实现,提供实践指导。
2024-12-28 10:54:59
1651
1
原创 (附代码)基于 PyTorch 的语义分割模型训练框架:动态绘制性能指标曲线
本文介绍了一个基于 PyTorch 的语义分割训练框架,重点展示如何动态绘制 mIoU、Recall、Precision、F1 Score 等性能指标曲线,结合 `train.py` 的核心功能模块(数据加载、训练验证、Dice 损失等),帮助开发者直观评估模型效果并优化训练过程。
2024-12-28 10:03:38
493
原创 (附代码)python实现钢材表面缺陷语义分割GUI界面预测工具
本文介绍了一款基于Python的钢材表面缺陷语义分割工具,使用图形用户界面(GUI)实现对钢材表面缺陷的检测与可视化。工具支持单张图片和批量图片检测,能够实时显示分割结果,并提供类别描述以便快速分析缺陷类型。
2024-12-26 09:48:39
1280
1
原创 (附代码)保姆级教程:用 Python 将 M4A 转换为 WAV 和 WRD 文件
本文是一个保姆级教程,详细讲解了如何使用 Python 将 M4A 音频文件 转换为 WAV 文件,并通过 Vosk 模型 提取文字和时间戳信息,生成 WRD 文件。
2024-12-25 11:03:20
1464
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人