- 博客(1)
- 收藏
- 关注
原创 大数据驱动下物流仓储智能补货模型构建与实现
企业需从 数据治理(确保数据质量)、 算法迭代(持续优化模型)、 组织适配(打破部门壁垒)三方面发力。随着5G、边缘计算等技术的普及,未来的补货模型将更加实时化与自适应,推动物流仓储从“经验驱动”迈向“数据驱动”的新纪元。多目标优化:平衡库存成本、缺货损失、仓储容量限制,采用遗传算法(GA)或粒子群优化(PSO)求解最优补货量;特征编码:将非结构化数据(如促销文案)转化为词向量(Word2Vec),作为预测模型的输入;- 仓储数据:库位状态、库存周转率、拣货路径(通过RFID/传感器实时感知)。
2025-04-25 17:28:25
1900
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅