中国古代著名算题。原载《孙子算经》:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二。问物几何?”。本题要求:设某物数量是 N,且三三数剩 x,五五数之剩y,七七数剩z 。 x,y,z 的值可从键盘输入,请求出对应的最小 N 值并输出。
输入格式:
在一行中给出x、y、z的值,空格隔开。
输出格式:
输出N的值。
输入样例1:
在这里给出一组输入。例如:
2 3 2
输出样例1:
在这里给出相应的输出。例如:
23
输入样例2:
在这里给出一组输入。例如:
1 1 3
输出样例2:
在这里给出相应的输出。例如:
31
译文:现有一物不知道它的数量,每三个数它最后剩二,每五个数它最后剩三,每七个数它最后剩二,问这是什么数?答:二十三。
解析:其中70是5、7公倍数中被3除余1的数;21是3、7公倍中被5除余1的数;15是3、5公倍数中被7除余1的数。105则是3、5、7的最小公倍数。如果得数较大,可以连续减去105。 依此,上题可列式为: 70×2+21×3+15×2=233 ,233-105-105=23。
#include <stdio.h>
int main()
{
int x ,y, z;
scanf("%d %d %d",&x ,&y ,&z);
for(int i = 0; ; i++)
{
if(i % 3 == x && i % 5 == y && i % 7 == z)
{
printf("%d", i);
break;
}
}
return 0;
}