LeetCode算法题解(动态规划、买卖股票)|LeetCode309. 买卖股票的最佳时机含冷冻期、LeetCode714. 买卖股票的最佳时机含手续费

一、LeetCode309. 买卖股票的最佳时机含冷冻期

题目链接:309. 买卖股票的最佳时机含冷冻期
题目描述:

给定一个整数数组prices,其中第  prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: prices = [1,2,3,0,2]
输出: 3 
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

示例 2:

输入: prices = [1]
输出: 0

提示:

  • 1 <= prices.length <= 5000
  • 0 <= prices[i] <= 1000
算法分析:

对于含有冷冻期的股票买卖,我们可以有三种状态,一是买入股票、二是卖出股票、三是冷冻期。

定义dp数组及下标含义:

dp[i][0]表示买入股票的状态,dp[i][1]表示卖出股票的状态,dp[i][2]表示冷冻期的状态。

递推公式:

对于dp[i][0]表示买入或持有股票的状态,我们可以有两个方向推导出来:

1、如果i-1天就已经买入股票,那么第i天继续保持,即dp[i][0]=dp[i-1][0];

2、如果i-1天是冷冻期的状态,那么第i天就可以买入股票,即dp[i][0]=dp[i-1][2]-prices[i];

所以第i天持有股票的最大利润为dp[i][0]=max(dp[i-1][0],dp[i-1][2]-prices[i])。

而对于dp[i][1],卖出股票的状态,也可以有两个方向推导出来:

1、如果i-1天是冷冻期或卖出股票的状态,那么第i天可以继续保持不买入股票,即dp[i][1]=dp[i-1][1];

2、如果i-1天是持有股票的状态,那么第i天就可以卖出股票,即dp[i][1]=dp[i-1][0]+prices[i];

对于dp[i][2],冷冻期的状态,我们只能由一个方向推到出来,那就是i-1天是卖出的状态,即dp[i][2]=dp[i-1][1];

初始化:

dp[i][0]=-prices[0],第0天买入股票的利润为0-prices[0]。

dp[i][1]=0第0天卖出股票的利润为0;

dp[i][2]=0第0天是冷冻期时的利润为0,其实第0天是不可能到达冷冻期的,不过为了不影响下一次买入股票的结果,我们将它初始化成0。

遍历顺序:

从第1天开始往后遍历每一天的股票价格。

打印dp数组进行验证。

代码如下:

class Solution {
    public int maxProfit(int[] prices) {
        int[][] dp = new int[prices.length][3];
        dp[0][0] = -prices[0];//买入或持有股票的状态
        dp[0][1] = 0;//卖出股票或不持有股票的状态
        dp[0][2] = 0;//冷冻期的状态
        for(int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i-1][2]-prices[i],dp[i-1][0]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]+prices[i]);
            dp[i][2] = dp[i-1][1];
        }
        return dp[prices.length - 1][1];
    }
}

二、LeetCode714. 买卖股票的最佳时机含手续费

题目链接:714. 买卖股票的最佳时机含手续费
题目描述:

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104
算法分析:

这道题只有两种状态,持有和不持有,不过因为每次买卖要交手续费,所以每次卖出股票的时候(也可以是买入股票的时候)都要减去手续费,所以这时不持有股票的利润是可能比持有股票要小的。

定义dp数组及下标含义:

dp[i][0]表示持有股票的状态,dp[i][1]表示不持有股票的状态。

递推公式:

对于dp[i][0],持有股票可以由两个方向推导出来:

1、如果i-1天是持有股票的状态,那么第i天可以继续保持,即dp[i][0]=dp[i-1][0];

2、如果i-1天不持有股票的状态,那么第i天就可以买入股票,即dp[i][0]=d[i-1][1]-prices[i];

所以第i天持有股票的最大利润为dp[i][0]=max(dp[i-1][0],dp[i-1][1]-prices[i]);

而对于dp[i][1],不持有股票也可以由两个方向推导出来:

1、如果i-1天是不持有股票的状态,那么第i天可以继续保持,即dp[i][1]=dp[i-1][1];

2、如果i-1天是持有股票的状态,那么第i天就可以卖出股票,即dp[i][1]=dp[i-1][0]+prices[i]-fee(注意卖出股票后要交一次手续费);

所以第i天不持有股票的最大利润为dp[i][1]=max(dp[i-1][1],dp[i-1][0]+prices[i]-fee);

初始化:

dp[0][0]=-prices[0],第0天买入股票时的利润为0-prices[0];

dp[0][1]=0,第0天不持有股票时的利润为0;

遍历顺序:

从第1天开始往后遍历每一天的股票价格。

打印dp数组进行验证。

代码如下:

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int[][] dp = new int[prices.length][2];
        dp[0][0] = -prices[0];//持有股票的状态
        dp[0][1] = 0;//不持有股票的状态
        for(int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1]-prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]+prices[i]-fee);
        }
        return Math.max(dp[prices.length - 1][1], dp[prices.length - 1][0]);//返回最后一天卖出和不买出股票时利润的最大值

    }
}

总结

对于股票买卖的问题,根据具体的情况定义不同的股票状态。

如可以多次买卖,且不含冷冻期可以只定义持有和不持有股票两种状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值