自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 蒙特卡洛算法:博弈类游戏中的智慧之道

通过模拟大量的随机对局,蒙特卡洛算法可以帮助玩家评估策略、搜索最优解、预测对手行为,从而提高胜率,培养思维能力,并拓宽对游戏和现实生活的认知。通过模拟大量的随机对局,蒙特卡洛算法能够帮助玩家制定更加智慧的策略,提高胜率,成为博弈游戏中的一把利器。在博弈类游戏中,蒙特卡洛算法可以被用来模拟游戏对局,评估不同策略的优劣,并帮助玩家做出更明智的决策。通过蒙特卡洛算法建立对手模型,并预测对手的行为,玩家可以更好地理解对手的策略和心理,从而更好地应对对手的行动。这将显著提高玩家的胜率,增加游戏的乐趣和挑战性。

2023-08-16 12:40:02 465 1

原创 遗传算法在机器学习中的应用

在机器学习中,遗传算法被用于搜索模型的参数空间,以寻找最优或次优的解,并用于特征选择、神经网络优化、分类问题和聚类分析等领域。在机器学习中,模型超参数起着重要的作用,但是针对不同的数据集和任务,超参数的最优值往往不同。它是从群体中选择最优解来进行搜索的算法,通过随机性的进化操作,使得最优解不断地向整个搜索空间中的最优解逼近。在神经网络中,遗传算法可以用于权重和偏置的优化。总之,遗传算法提供了一种有效的搜索和优化机制,而随着计算能力的提高、算法的进一步优化和拓展,在机器学习中的应用将会更加广泛和深入。

2023-05-18 11:37:58 1969 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除