问题有两个:
- 刚刚开始在进行二分之前没有对r进行操作,就导致一开始写的cal会出现需要处理一些非法的情况,比如一个2进制的数字“6”,在cal里处理其实会比较麻烦,所以根据字符串的每一位的情况先对r进行约束是很巧妙的做法;
- 担心自己写的cal有问题,用的stoll,结果发现对于进制比较大的情况算出来是有点问题的,但是因为我平时没有用过stoll,花了很久才debug到这个上面;
- cal()函数里面一开始是这样的:
long long cal(LL x, string c) {
LL pa = 1;
long long rs = 0;
for (int i = c.size() - 1; i >= 0; i -- ) {
if(c[i] - '0' <= 9 && c[i] - '0' >= 0) {
if((double)rs += (1L * pa * (c[i] - '0')> 1e16) return 1e18;
rs += (1L * pa * (c[i] - '0'));
}
else {
if((double)rs += (1L * pa * (c[i] - 'a' + 10)) > 1e16) return 1e18;
rs += (1L * pa * (c[i] - 'a' + 10));
}
pa *= x;
}
return rs;
}
这个写法在有一个测试集会无法通过,输出出来怀疑是计算有损失所以导致二分法查找错误,所以改成下面的写法了。
all:这个题目说真的思路不难,但是需要注意的细节实在是很多……
最后能过的代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
string N1, N2;
long long num[50];
int tag, radix;
long long cal(LL x, string c) {
long long rs = 0;
for (int i = 0; i < c.size(); i ++ ) {
if(c[i] - '0' <= 9 && c[i] - '0' >= 0) {
if((double)rs * x + (1L * (c[i] - '0')) > 1e16) return 1e18;
rs = rs * x + (1L * (c[i] - '0'));
}
else {
if((double)rs * x + (1L * (c[i] - 'a' + 10)) > 1e16) return 1e18;
rs = rs * x + (1L * (c[i] - 'a' + 10));
}
}
return rs;
}
int main() {
cin >> N1 >> N2 >> tag >> radix;
long long res_cmp = 0;
if(tag == 2) {
string num1 = N1;
N1 = N2;
N2 = num1;
}
res_cmp = std::stoll(N1, nullptr, radix);
// find out the suitable radix
// 把二进制的数字和三十六为底的数字当做二分的两个端点!
// 这样就不需要求出所有的值了
LL l = 2, r = max(res_cmp, 36LL);
for(auto p: N2) {
LL num2;
if(p <= '9') num2 = p - '0';
else num2 = p - 'a' + 10;
l = max(l, num2 + 1);
}
while (l < r)
{
LL mid = (l + r) >> 1;
// cout <<l << " " << r << " " <<mid << endl;
long long tmp = 0;
// tmp = std::stoll(N2, nullptr, mid);
tmp = cal(mid, N2);
if (tmp >= res_cmp) {
r = mid;
}
else l = mid + 1;
}
long long res = 0;
res = cal(r, N2);
// if(tag == 1) res = std::stoll(N2, nullptr, l);
// else res = std::stoll(N1, nullptr, l);
if(res != res_cmp) cout << "Impossible" << endl;
else cout << r << endl;
// cout << r << endl;
// cout << cal(13, "aa1589bc") << " " << cal(22, "5l4l08a") << endl;
return 0;
}