【Daily Coding】PAT-进制

问题有两个:

  1. 刚刚开始在进行二分之前没有对r进行操作,就导致一开始写的cal会出现需要处理一些非法的情况,比如一个2进制的数字“6”,在cal里处理其实会比较麻烦,所以根据字符串的每一位的情况先对r进行约束是很巧妙的做法;
  2. 担心自己写的cal有问题,用的stoll,结果发现对于进制比较大的情况算出来是有点问题的,但是因为我平时没有用过stoll,花了很久才debug到这个上面;
  3. cal()函数里面一开始是这样的:
long long cal(LL x, string c) {
	LL pa = 1;
   long long rs = 0;
   for (int i = c.size() - 1; i >= 0; i -- ) {
       if(c[i] - '0' <= 9 && c[i] - '0' >= 0) {
           if((double)rs += (1L * pa * (c[i] - '0')> 1e16) return 1e18;
           rs += (1L * pa * (c[i] - '0'));
       }
       else {
           if((double)rs += (1L * pa * (c[i] - 'a' + 10)) > 1e16) return 1e18;
           rs += (1L * pa * (c[i] - 'a' + 10));
       }
       pa *= x;

   }
   return rs;
}

这个写法在有一个测试集会无法通过,输出出来怀疑是计算有损失所以导致二分法查找错误,所以改成下面的写法了。

all:这个题目说真的思路不难,但是需要注意的细节实在是很多……

最后能过的代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long LL;

string N1, N2;
long long num[50];
int tag, radix;

long long cal(LL x, string c) {
    long long rs = 0;
    for (int i = 0; i < c.size(); i ++ ) {
        if(c[i] - '0' <= 9 && c[i] - '0' >= 0) {
            if((double)rs * x + (1L * (c[i] - '0')) > 1e16) return 1e18;
            rs = rs * x + (1L * (c[i] - '0'));
        }
        else {
            if((double)rs * x + (1L * (c[i] - 'a' + 10)) > 1e16) return 1e18;
            rs = rs * x + (1L * (c[i] - 'a' + 10));
        }

    }
    return rs;
}


int main() {
    cin >> N1 >> N2 >> tag >> radix;
    
    long long res_cmp = 0;
    if(tag == 2) {
        string num1 = N1;
        N1 = N2;
        N2 = num1;
    }
    res_cmp = std::stoll(N1, nullptr, radix);

    // find out the suitable radix
    // 把二进制的数字和三十六为底的数字当做二分的两个端点!
    // 这样就不需要求出所有的值了
    LL l = 2, r = max(res_cmp, 36LL);
    for(auto p: N2) {
        LL num2;
        if(p <= '9') num2 = p - '0';
        else num2 = p - 'a' + 10;
        l = max(l,  num2 + 1);
    }
    
    while (l < r)
    {
        LL mid = (l + r) >> 1;
        // cout <<l << " " <<  r << " " <<mid << endl;
        long long tmp = 0;
        // tmp = std::stoll(N2, nullptr, mid);
        
        tmp = cal(mid, N2);
        if (tmp >= res_cmp) {
            r = mid;
        }
        else l = mid + 1;
    }
    
    long long res = 0;
    res = cal(r, N2);
    // if(tag == 1) res = std::stoll(N2, nullptr, l);
    // else res = std::stoll(N1, nullptr, l);

    if(res != res_cmp) cout << "Impossible" << endl;
    else cout << r << endl;
    // cout << r << endl;
    // cout << cal(13, "aa1589bc") << " " << cal(22, "5l4l08a") << endl;

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值