数据在内存中的存储
整数在内存中的存储
在内存中存放的是二进制。
整数的二进制表示方法有三种,即 原码、反码和补码 。
三种表示方法均有 符号位 和 数值位 两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的一位是被当作符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码 :直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码 :将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码 :反码+1就得到补码。
对于整型来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。
原因在于,使用补码,可以将符号位和数值域统一处理。
同时,加法和减法可以统一处理( CPU只有加法器 )。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
大小端字节序和字节序判断
- 什么是大小端
其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储。
大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。 - 为什么有大小端?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit位,但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题,因此导致了大端存储模式和小端存储模式。
例如:一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中,小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。 - 设计一个程序来判断当前机器的字节序
#include <stdio.h>
int check_sys()//大端返回0,小端返回1
{
int i = 1;
return *((char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
在VS2022,X86环境下运行结果为:
通过内存来看可以更好的验证:
浮点数在内存中的存储
常见的浮点数:3.14159,1E10(1.0 * 1010)等,浮点数家族包括:float、double、long double类型。浮点数表示的范围: float.h 中定义。
那么浮点数和整数在内存中的存储方式相同吗?
我们通过代码来验证一下:如果打印结果相同,则是相同的。
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
结果为:
由此我们可以看出整型和浮点型在内存中的存储方式是有差异的。
我们先来了解浮点数在计算机内部的表示方法
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
V = (-1)S * M * 2E
- (-1)S 表示符号位,当S = 0,V为正数;当S = 1,V为负数
- M表示有效数字,M是大于等于1,小于2的
- 2E表示指数位
举个例子:
十进制的5.0,写成二进制是101.0,相当于1.01 * 22。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是-101.0,相当于-1.01 * 22。
那么,按照上面V的格式,可以得出S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
这也就是为什么float类型(32位)称为单精度,double(64位)称为双精度,因为double存储的有效数字M的位数多,精度更高。
- 浮点数存的过程
IEEE 754对有效数字和指数E,还有一些特别规定。
上文我们都知道,1 <= M < 2, 也就是说,M可以写成1.xxxxx的形式,其中xxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxx部分。比如1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的是,节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
指数E的情况比较复杂,首先, E为一个无符号整数 这意味着,如果E为8位,它的取值范围是0 ~ 255;如果E为11位,它的取值范围为0 ~ 2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,210的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
- 浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1.
比如:0.5的二进制为0.1,由于规定整数部分必须为1,即将小数点右移1位,则为1.0*2(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐到23位0000000000000000000000,则其二进制表示形式为:
0 01111110 0000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S)。
让我们再来看看最初代码为什么会输出那样的结果?
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
为什么整数形式存储在内存的9按照浮点数形式拆分会变成0.000000
9以整型的形式在内存中存储,得到如下二进制序列:
0000 0000 0000 0000 0000 0000 0000 1001
所以将9的二进制序列按照浮点数的形式拆分,得到第一位符号位S=0,后面8位的指数E=00000000,最后23位的有效数字M=000 0000 0000 0000 0000 1001。
由于指数E全为0,所以符合E为全0的情况,因此,浮点数V就写成:
V = (-1)0 * 0.000 0000 0000 0000 0000 1001 * 2(-126) = 1.001 * 2(-146)
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
浮点数9.0为什么整数打印是1091567616
首先,浮点数9.0等于二进制的1001.0,即换成科学计数法是:1.001 * 23
所以:9.0 = (-1)0 * (1.001) * 23
第一位为符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127 = 130,即10000010
所以二进制序列为:
0 10000010 001 0000 0000 0000 0000 0000
这个32位的二进制数,被当作整数来拆解时,就是整数在内存中的补码,原码就是1091567616
好了,数据在内存中的存储我们就先学到这,希望对大家的学习有所帮助。