🎯 一、项目概述
在电商平台上,商品推荐系统是提升用户体验、增加销售额的重要工具。许多电商网站会基于用户的历史行为、评论数据以及商品的相关性进行推荐。本文将详细介绍如何使用 Python 爬虫 技术抓取电商平台的用户评价数据,并基于这些数据构建一个简单的商品推荐系统。
我们的目标是:
- 使用 Scrapy 爬虫框架抓取用户的评价数据。
- 使用 Natural Language Processing (NLP) 技术对评论内容进行情感分析和处理。
- 基于用户评分和评论内容,使用 Collaborative Filtering (协同过滤算法) 实现推荐系统。
- 通过机器学习模型优化推荐的准确性,并展示推荐结果。
🕷️ 二、数据抓取
2.1 使用 Scrapy 框架抓取用户评论数据
在构建推荐系统之前,我们需要抓取商品的用户评价数据。我们将使用 Scrapy 来从电商网站上抓取商品的评论信息。
2.1.1 安装 Scrapy
首先,安装 Scrapy&#x