在学术研究中,引用信息是衡量一篇论文影响力的关键指标之一。通过了解一篇论文的引用数量和引用情况,研究人员可以更好地评估其学术贡献,并基于这些数据制定研究方向。然而,获取准确的引用数据并不是一件容易的事,尤其是当这些数据分散在多个学术平台上时。本文将介绍如何使用Python构建一个高效的爬虫,自动抓取学术论文的引用信息。我们将通过Google Scholar、ResearchGate等平台抓取引用数量、被引用的论文以及引用的相关信息。
一、项目概述
1.1 项目目标
- 从Google Scholar、ResearchGate等平台抓取某篇学术论文的引用数据。
- 获取引用数量、引用的论文标题、作者、引用链接等信息。
- 将抓取到的引用信息保存为CSV或JSON格式,便于后续分析和处理。
1.2 技术栈
- Python 3.8+
- requests:发送HTTP请求
- BeautifulSoup:解析HTML文档
- re:正则表达式处理
- json:处理JSON数据
- csv:处理CSV文件
- scholarly:一个用于从Google Scholar抓取数据的库