目录
前言:
通常我们知道整型在内存中是以二进制的补码进行存储,但浮点型在内存中的存储却并不是那么被人们所熟知,下面让我们探讨二进制在内存中的存储规则。
正文:
首先我们先看这一则有趣的代码:
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
}
结果可能让你们大跌眼镜
第一个和第四个的结果不出我们所料,但第二个和第三却大大出乎我们预料,num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?通过我们了解了浮点型在内存中的存储方式,问题也就迎刃而解了。
浮点数存储规则:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,用科学计数法相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,用科学计数法相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
【图1】
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
【图2】
分析 S E M:
S:
存入内存:
浮点数若为正,S = 0,若为负,S = 1,存放S的二进制,存放位置如图1(图2)。
读取得值:
浮点数若为正,S = 0,若为负,S = 1。
M:
存入内存:
1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分,IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.001的时 ,只存001(位数不够向右补0,直至补满),在内存存放如图1(或图2)。
读取得值:
情况一:E不全为0也不全为1
把舍弃的1补上,得M值。
情况二:E全为0
舍弃的1不用不上了。
解释:因为如果此时E = 0,则E的真实值为-127(或-1023)想想看,2^-127有多小,你M的1补不补上对于结果已经几乎没影响了,所以就规定干脆不补上M的1了
E:
存入内存:
E = E + 127(或1023)(注:单精度加127,双精度加1023)
比如:
单精度 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),E = -1,则存入内存时E = -1 + 127 = 126转化为二进制为01111110,二进制存储在内存中如果不够位数,则在右边补0,直至补够位数为止。
读取得值(3种情况):
情况1:E不全为0或不全为1
E = E - 127(或1023)(注:单精度减127,双精度减1023)
情况:2:E全为0
E的值不用变回去了,此时浮点数的指数E等于1-127(或者1-1023)即为真实值。
情况3:E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S)。
解释前面的题目:
当你了解了二进制在内存的存储规则后,是不是对开头的题豁然开朗呢,第一个和第四个结果我们不做解释,解释第二和第三个结果
【第二个结果解释】
printf("*pFloat的值为:%f\n", *pFloat);
用%f打印,则认为*pFloat为float型
1.写出9的二进制原码
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
2.由图1得出9看成浮点型在内存的分布
0 00000000 00000000000000000001001
3,根据上文读取值规则,可知S = 0 ,M = 0.00000000000000000001001, E = 1 - 127 =-126(注:因为E全为0,所以M的1不用补上了,E = 1 - 127 = 126)
4.运用公式 浮点数V = (-1)^S * M * 2^E = (-1)^0 * 0.00000000000000000001001* 2^-126。显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
【第三个结果解释】
*pFloat = 9.0;可知n 和*pFloat 被赋值为浮点数
1.计算出浮点数在内存的二进制原码为1001.0
2.用科学计数
1001.0 = 1.001*2^3 根据公式(-1)^S * M * 2^E可知S = 0,M = 1.001,E = 3.
3.根据前文存入内存的规则可知:S = 0, M = 001,E = 3 + 127 = 130.再根据图一得浮点数9.0在内存分布为:
0 1000 0010 00100000000000000000000 转换位十进制结果为1,091,567,616。
完结!!!