[C语言]浮点数:在内存中的存储

文章介绍了浮点数在内存中的存储方式,依据IEEE754标准,包括符号位、指数和有效数字的表示方法。通过一个代码示例展示了整型和浮点型在内存中的转换,解释了浮点数如何转换为二进制以及如何从内存中解读这些二进制表示。
摘要由CSDN通过智能技术生成

目录

前言:

正文:

分析 S E M:

S:

M:

E:

解释前面的题目:


前言:

通常我们知道整型在内存中是以二进制的补码进行存储,但浮点型在内存中的存储却并不是那么被人们所熟知,下面让我们探讨二进制在内存中的存储规则。

正文:

首先我们先看这一则有趣的代码:

#include <stdio.h>

int main()
{
	int n = 9;
	float* pFloat = (float*)&n;

	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);

	*pFloat = 9.0;

	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
}

结果可能让你们大跌眼镜

 第一个和第四个的结果不出我们所料,但第二个和第三却大大出乎我们预料,num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?通过我们了解了浮点型在内存中的存储方式,问题也就迎刃而解了。

浮点数存储规则:

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
举例来说:
十进制的5.0,写成二进制是 101.0 ,用科学计数法相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,用科学计数法相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

 

                                                                     【图1】

 对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

                                                                      【图2】 

分析 S E M:

S:

存入内存:

浮点数若为正,S = 0,若为负,S = 1,存放S的二进制,存放位置如图1(图2)。

读取得值:

浮点数若为正,S = 0,若为负,S = 1。

M:

存入内存:

1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分,IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去只保存后面的xxxxxx部分。比如保存1.001的时 ,只存001(位数不够向右补0,直至补满),在内存存放如图1(或图2)。

读取得值:

情况一:E不全为0也不全为1

把舍弃的1补上,得M值。

情况二:E全为0

舍弃的1不用不上了。

解释:因为如果此时E = 0,则E的真实值为-127(或-1023)想想看,2^-127有多小,你M的1补不补上对于结果已经几乎没影响了,所以就规定干脆不补上M的1了

E:

存入内存:
E = E + 127(或1023)(注:单精度加127,双精度加1023)
比如:
单精度 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),E = -1,则存入内存时E = -1 + 127 = 126转化为二进制为01111110,二进制存储在内存中如果不够位数,则在右边补0,直至补够位数为止。

读取得值(3种情况):

情况1:E不全为0或不全为1

E = E - 127(或1023)(注:单精度减127,双精度减1023)

情况:2:E全为0

E的值不用变回去了,此时浮点数的指数E等于1-127(或者1-1023)即为真实值。

情况3:E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S)。

解释前面的题目:

当你了解了二进制在内存的存储规则后,是不是对开头的题豁然开朗呢,第一个和第四个结果我们不做解释,解释第二和第三个结果

【第二个结果解释】

printf("*pFloat的值为:%f\n", *pFloat);

用%f打印,则认为*pFloat为float型

1.写出9的二进制原码

9 -> 0000 0000 0000 0000 0000 0000 0000 1001

2.由图1得出9看成浮点型在内存的分布

0  00000000  00000000000000000001001

3,根据上文读取值规则,可知S = 0 ,M = 0.00000000000000000001001, E = 1 - 127 =-126(注:因为E全为0,所以M的1不用补上了,E = 1 - 127 = 126)

4.运用公式 浮点数V = (-1)^S * M * 2^E = (-1)^0 * 0.00000000000000000001001* 2^-126。显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

【第三个结果解释】

*pFloat = 9.0;可知n 和*pFloat 被赋值为浮点数

1.计算出浮点数在内存的二进制原码为1001.0

2.用科学计数

1001.0 = 1.001*2^3 根据公式(-1)^S * M * 2^E可知S = 0,M = 1.001,E = 3.

3.根据前文存入内存的规则可知:S = 0, M = 001,E = 3 + 127 = 130.再根据图一得浮点数9.0在内存分布为:

0   1000 0010   00100000000000000000000 转换位十进制结果为1,091,567,616。

完结!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值