约瑟夫环简述

约瑟夫环(Josephus Problem)是一个经典的数学和计算机科学问题,它描述了一群人围成一个圈,按照特定顺序编号,从某个点开始,每隔固定步数的人被剔除,直到只剩下一个人为止。这个过程会重复进行,直到最后剩下的人是最初的那个人。

约瑟夫环问题举例:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀的顺序是:5,4,6,2,3,1

什么是约瑟夫环?

    1.问题来历:据说著名犹太历史学家Josephus(弗拉维奥·约瑟夫斯)有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决。Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏

约瑟夫环问题解决方式:

    1.数组方法解决

    2.数学方法解决

    3.环形链表

相比较数组方法,我觉得数学方法相对简单,但随人员变动,会具有不确定性,但是在一些衍生问题中,数学方法无疑是最好的方法

解决:

解决约瑟夫环问题的一种常见算法是使用模运算。将所有人的初始位置编号为0到n-1,然后从编号为k的人开始报数,每次加1,直到只剩下一个数为止。这个数即为最终的答案。例如,如果人数为7,报数步长为3(即k=3),那么计算过程如下:

 

1. 报数从3开始:3, 6, 1, 4, 2, 5, 0

2. 剔除3和6:1, 4, 2, 5, 0

3. 剔除1:4, 2, 5, 0

4. 剔除4:2, 5, 0

5. 剩余2,5,0,报数后2被剔除

6. 剩余5,0,报数后0被剔除

7. 最后剩余5,所以答案是5

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值