机器学习
文章平均质量分 74
本专栏介绍机器学习的基本概念及代码实现
喝水时间到
这个作者很懒,什么都没留下…
展开
-
机器学习之神经网络 基本概念
这样的结构与信息反馈过程,使得网络在t时刻的输出状态不仅与t时刻的输入有关,还与t-1时刻的网络状态有关,从而能处理与时间有关的动态变化Elman 网络[Elman,1990]是最常用的递归神经网络之一,其结构如图,它的结构与多层前馈网络很相似,但隐层神经元的输出被反馈回来,与下-时刻输入层神经元提供的信号一起,作为隐层神经元在下一时刻的输入。理想中的激活函数是图(a)所示的阶跃函数,它将输入值映射为输出值“0”或“1”,显然“1”对应于神经元兴奋,“0”对应于神经元抑制。原创 2024-07-31 18:25:57 · 1040 阅读 · 0 评论 -
机器学习之决策树 基本概念
决策树学习的目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策树,其基本流程遵循简单且直观的“”(divide-and-conquer)策略。原创 2024-07-30 19:22:39 · 609 阅读 · 0 评论 -
机器学习之线性回归 使用正规方程求解线性回归模型的参数
本文章介绍了深度学习之线性回归的实操代码以及详细讲解。原创 2024-07-20 14:28:42 · 176 阅读 · 0 评论