题目来自洛谷:
思路:
题目要求我们求最少删除多少个数,可以使剩下的序列是接龙序列。也就是说,我们要求合法的最长的接龙序列。接龙序列:“例如 12,23,35,56,61,11 是接龙数列;12,23,34,56 不是接龙数列,因为 56 的首位数字不等于 34 的末位数字。所有长度为 1 的整数数列都是接龙数列。”
我们可以“选和不选”的思想,来解决这道题目。先枚举所有的合法的方案,然后在返回时,返回最大那个分支。
记忆化搜索:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5+20;
int n;
int arr[N];
int mem[N][11]; // 修改1:第二维改为11
int get_final(int x) {
return x % 10;
}
int get_first(int x) {
while (x >= 10) x /= 10;
return x;
}
int dfs(int x, int final) { // final:-1表示前面没有保留的数字
if (x > n) return 0;
// 修改2:将final偏移+1避免负数索引
if (mem[x][final + 1] != -1) return mem[x][final + 1];
int s = get_first(arr[x]);
int e = get_final(arr[x]);
// 修改3:处理初始状态(final=-1的情况)
if (final == -1) {
int keep = dfs(x + 1, e); // 保留当前数字
int skip = dfs(x + 1, -1) + 1; // 跳过当前数字
return mem[x][final + 1] = min(keep, skip);
}
if (s != final) { // 只能跳过
return mem[x][final + 1] = dfs(x + 1, final) + 1;
}
// 可以选择保留或跳过
int keep = dfs(x + 1, e);
int skip = dfs(x + 1, final) + 1;
return mem[x][final + 1] = min(keep, skip);
}
signed main() {
cin >> n;
for (int i = 1; i <= n; i++) cin >> arr[i];
memset(mem, -1, sizeof mem);
cout << dfs(1, -1) << endl; // 修改4:初始状态设置为-1
return 0;
}
递推代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5+20;
int n;
int arr[N];//存数据
int f[N][15];
//得到数字的尾项
int get_final(int x){
return x%10;
}
//①得到数字的首位容易错误 没考虑到个位数的存在
int get_first(int x){
while(x >= 10){
x= x/ 10;
}
return x;
}
signed main(){
cin >> n;
for(int i = 1; i <= n; i++) cin >> arr[i];
int final = get_final(arr[1]);
f[1][final] = 1;
//从上往下递推
//求的是最长子序列
for(int i = 2; i <= n; i++){
int s = get_first(arr[i]);
int e = get_final(arr[i]);
//不选 没有记录前面数字的最后一个数字
//因此 for 循环遍历一下 把最后一个数字传下来
for(int j = 0; j<=9; j++){
f[i][j] = f[i-1][j];
}
//选择
//返回的是f[i-1][s] +1话,代表能够构成最长子序列
//返回的是f[i][e] 代表不选
f[i][e] = max(f[i][e], f[i-1][s] +1);
}
//因为是从上往下递归的,所以要遍历一下第n层的点,找到最长接龙序列
int ans = 0;
for(int i = 0; i <= 9; i++){
ans = max(ans, f[n][i]);
}
cout << n-ans << endl;
return 0;
}