下面的内容来自我大学的一门课程(水资源优化配置)的实验报告,写的很详细,供初学者参考。
1.线性规划问题的组成
线性规划(Linear Programming,LP)是数学规划的一个重要分支,用于分析线性约束条件下目标函数的最优化问题。线性规划的特点是目标函数及约束条件的数学形式均为线性。对于一个实际问题在建立线性规划数学模型时:
1)根据问题的已知条件选择决策变量x1,x2,...,xn.
2)根据问题的要求,建立目标函数关系式。目标函数关系式如为非线性,则应线性化。目标函数单位可以是货币单位,也可以是其他单位。
3)根据客观条件的限制(如水资源量等)建立约束方程。
在进行上述三方面的抽象和简化后,就实现了根据实际的条件和人们想要达到的目的,把一个具体问题转化成线性规划的数学模型。在转化中,尤其对约束方程的建立更应注意,如果遗漏了某些限制条件,求得的结果可能不是最优解。
因此,建立线性规划模型的关键步骤为: