使用excel和matlab两种工具求解供水线性规划问题

本文详细介绍了线性规划在水资源配置中的应用,包括决策变量的选择、目标函数和约束条件的设定,以及如何使用Excel和Matlab求解实例。通过实例展示,展示了如何将实际问题转化为线性规划模型并求得最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面的内容来自我大学的一门课程(水资源优化配置)的实验报告,写的很详细,供初学者参考。

1.线性规划问题的组成

线性规划(Linear Programming,LP)是数学规划的一个重要分支,用于分析线性约束条件下目标函数的最优化问题。线性规划的特点是目标函数及约束条件的数学形式均为线性。对于一个实际问题在建立线性规划数学模型时:

1)根据问题的已知条件选择决策变量x1,x2,...,xn.

2)根据问题的要求,建立目标函数关系式。目标函数关系式如为非线性,则应线性化。目标函数单位可以是货币单位,也可以是其他单位。

3)根据客观条件的限制(如水资源量等)建立约束方程。

在进行上述三方面的抽象和简化后,就实现了根据实际的条件和人们想要达到的目的,把一个具体问题转化成线性规划的数学模型。在转化中,尤其对约束方程的建立更应注意,如果遗漏了某些限制条件,求得的结果可能不是最优解。

因此,建立线性规划模型的关键步骤为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值