在数据科学、工程学和数学中,特征值和特征向量是理解和分析矩阵行为的核心概念。MATLAB 的 eig
函数是处理这些概念的强大工具。本文将介绍 eig
函数的基本用法,并通过示例展示如何使用它来计算特征值和特征向量。
什么是特征值和特征向量?
在矩阵分析中,特征值和特征向量帮助我们理解一个矩阵的性质。例如,在物理学中,它们可以用来描述系统的稳定性;在机器学习中,它们被用于数据降维和特征提取。
MATLAB 的 eig
函数
eig
函数用于计算矩阵的特征值和特征向量。它的基本用法如下:
-
计算特征值和特征向量:
[V, D] = eig(A)
-
A
是一个方阵。V
是一个矩阵,其中的列是矩阵A
的特征向量。D
是一个对角矩阵,其对角线上的元素是矩阵A
的特征值。
-
仅计算特征值:
D = eig(A)
返回一个列向量
D
,其中包含矩阵A
的特征值。
示例
让我们来看一个具体的例子。假设我们有以下矩阵 A:
A = [-29 6 18;
20 5 12;
-8 8 5];
我们可以使用 eig
函数计算其特征值和特征向量:
[X, D] = eig(A);
在这里:
X
将包含矩阵A
的特征向量(每一列对应一个特征向量)。D
将是一个对角矩阵,其中对角线上的元素是矩阵A
的特征值。
注意事项
eig
函数要求输入矩阵必须是方阵(行数等于列数)。- 特征值和特征向量可能是复数,即使输入矩阵是实数矩阵。