自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(47)
  • 收藏
  • 关注

原创 LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)

**摘要:**微调(Fine-tuning)**是在预训练模型基础上,使用特定任务或领域的数据进一步训练,使模型适应特定场景。主要方法包括: 全量微调:调整所有参数,性能最优但成本高; 参数高效微调(PEFT):如LoRA(低秩矩阵更新)、Prefix Tuning(前缀参数调整),仅微调少量参数,成本低且效果接近全量微调; 强化学习微调(RLHF):通过人类反馈优化模型行为,适用于价值观对齐和复杂任务。 LoRA是PEFT的代表方法,通过低秩矩阵分解减少可训练参数,显著降低计算和存储成本,同时保持性能。其

2025-09-14 18:17:37 1286 1

原创 LLM大模型-vLLM本地部署全流程:Windows WSL2环境安装、HuggingFace与Modelscope模型加载与本地运行、Docker化部署与镜像分发

vLLM本地部署大模型方案 vLLM是一款高性能大模型推理引擎,通过PagedAttention技术显著提升吞吐量和内存效率,支持低成本、高并发的本地部署。 核心优势: 性能卓越:吞吐量远超同类方案,支持连续批处理等高级功能 成本优化:减少GPU服务器需求 兼容性强:提供类OpenAI的简洁API 部署步骤: 硬件准备:需NVIDIA GPU(如A100/3090),显存≥模型参数量×2(7B模型需14GB) 软件环境: Linux系统或Windows WSL2 安装CUDA 12.1+和Python 3.

2025-09-14 18:02:03 1397

原创 LLM大模型-大模型 API 集成使用、部署本地大模型(huggingface、modelscope)、实现Qwen和Deepseek本地部署

人工智能中的大模型(Large Model / Foundation Model),是指参数规模通常在数十亿甚至千亿以上的深度神经网络。它们依靠大规模数据和高算力平台训练而成,具备强泛化能力和跨任务迁移能力,能够在自然语言处理、计算机视觉、语音、多模态等多个领域展现出较强的性能。参数规模巨大:例如 GPT-3 拥有 1750 亿参数。预训练 + 微调:先在海量通用数据上进行预训练,再通过少量标注数据进行下游任务微调。

2025-09-09 22:42:15 1309

原创 LLM大模型-Tokenizer及其分类与常见算法Word-based Tokenization、Character-based Tokenization、Subword-based Tokeniza

Tokenizer(分词器)是大模型处理文本的关键组件,负责将原始文本转换为模型可理解的数字格式。主要分为三类分词方法:基于词的分词(Word-based)简单高效但难以处理未登录词;基于字符的分词(Character-based)可处理任意字符但计算量大;基于子词的分词(Subword-based)通过BPE、WordPiece等算法平衡了词汇表大小和语义表达能力,成为现代大模型的主流方案。不同分词方法各有优劣,选择取决于任务需求,如文本分类适合词级分词,而机器翻译等复杂任务更适合子词分词。理解Token

2025-09-08 22:50:06 909

原创 LLM大模型基础-Transformer的核心组件Encoder-Decoder、PE、Multi-Head Attention、前馈神经网络、层归一化和残差连接

摘要:Transformer是2017年Google提出的革命性深度学习架构,通过自注意力机制取代传统RNN结构,实现并行计算和长距离依赖捕捉。核心包括编码器-解码器结构,编码器由输入嵌入、位置编码、多头自注意力和前馈网络组成。位置编码通过正弦/余弦函数为模型提供词序信息,多头注意力并行计算多个注意力子空间,前馈网络则进行非线性变换。该架构为BERT、GPT等模型奠定了基础,在NLP和CV领域取得重大突破。

2025-09-06 18:20:43 1078

原创 LLM大模型基础-自注意力机制:QKV和工作原理、多头自注意力机制、位置关联、层归一化

自注意力机制(Self-Attention)是现代深度学习尤其是NLP和CV领域的核心技术,最早由Transformer模型提出并应用于BERT、GPT等先进模型。其核心思想是让输入序列中的每个元素根据与其他元素的关系动态调整自身表示,从而有效捕捉长距离依赖,克服传统RNN/LSTM的局限性。该机制通过查询(Query)、键(Key)、值(Value)三个向量实现:Query用于查询其他元素信息,Key用于匹配相似度,Value则根据权重更新表示。计算过程包括输入表示、线性变换生成QKV、相似度计算、Sof

2025-09-04 19:33:23 1407

原创 YOLO 目标检测:YOLOv5网络结构、Focus、CSP、自适应Anchor、激活函数SiLU、SPPF、C3

带 shortcut(残差连接)的 CSP 模块。

2025-09-02 20:05:22 1583 1

原创 YOLO 目标检测:YOLOv4数据增强、CIoU Loss、网络结构、CSP、SPPNet、FPN和PAN

YOLOv4是一种高效目标检测模型,在YOLOv3基础上进行了多项改进。主要优化包括:1)采用CSPDarknet53作为主干网络,引入CSP结构减少计算量;2)增强特征融合模块,结合SPP、FPN和PAN提升多尺度检测能力;3)使用Mish激活函数改善梯度传递;4)引入Mosaic和CutMix等创新数据增强策略;5)采用DropBlock正则化和CIoU损失函数提升训练效果。相比YOLOv3,YOLOv4在保持实时性的同时显著提升了检测精度,特别在小目标检测方面表现突出。其创新设计思路为"Ba

2025-09-01 23:30:06 1116

原创 YOLO 目标检测:YOLOv3网络结构、特征输出、FPN、多尺度预测

YOLOv3是目标检测领域的经典模型,通过Darknet53主干网络实现高效特征提取,并引入残差连接缓解梯度消失。其核心创新在于多尺度检测机制,利用13×13、26×26、52×52三个不同分辨率的特征图分别检测大、中、小物体。通过FPN特征金字塔网络实现特征融合,结合自上而下的上采样和自下而上的卷积路径,将深层语义信息与浅层细节特征相结合,显著提升多尺度目标检测能力。模型采用CBL模块(卷积+批归一化+LeakyReLU)构建,最终输出包含边界框坐标、置信度和类别概率的预测结果。

2025-09-01 23:27:48 1262

原创 YOLO 目标检测:YOLOv2基本框架、多尺度训练、锚框、维度聚类、位置预测、passthrough

YOLOv2是YOLO系列第二代目标检测算法,在YOLOv1基础上进行了多项改进。其核心思想是将目标检测转化为单次回归任务,通过卷积神经网络直接预测边界框和类别概率。主要优化包括:引入锚框机制提升小目标检测能力,采用多尺度训练增强模型鲁棒性,使用K-Means聚类选择更优先验框,以及细粒度特征融合提升检测效果。网络结构由轻量级主干Darknet-19和检测头组成,输出13×13特征图,每个网格预测5个边界框。输入端通过多尺度训练和高分辨率微调提升性能。检测头采用锚框回归机制,通过聚类自动学习最优锚框尺寸,并

2025-08-31 18:25:42 751

原创 YOLO 目标检测:YOLOv1 原理详解 、 YOLOv5 数据集配置、训练全流程

文章摘要: YOLOv1是2016年提出的首个单阶段目标检测算法,将检测任务转化为回归问题,实现实时检测(45FPS)。其网络结构包含24个卷积层和2个全连接层,输出7×7×30张量,每个网格预测2个边界框(含坐标、置信度)和20类概率。损失函数联合优化定位(MSE)、置信度和分类损失,但存在小目标检测差、密集目标漏检等局限。YOLOv5作为后续改进版本,支持分类、检测、分割任务,训练需配置数据集YAML文件,通过调整参数(如批次大小、输入尺寸)进行模型训练,结果保存在runs/train/目录下,包含最优

2025-08-28 19:41:36 1197

原创 YOLO 目标检测:数据集构建(LabelImg 实操)、评估指标(mAP/IOU)、 NMS 后处理

计算机视觉中的目标检测技术主要涉及三大任务:图像分类、目标检测和图像分割。目标检测算法YOLO(You Only Look Once)因其速度快、精度高而广受欢迎,其核心特点是单阶段检测,直接从图像同时预测目标类别和位置。训练过程需严格区分训练、验证和测试集,并使用标注工具(如labelimg)对数据进行边界框标注。评估指标包括交并比(IOU)、置信度、混淆矩阵、精确度、召回率以及PR曲线,其中mAP(平均精度)是衡量模型性能的关键指标。YOLO采用归一化坐标表示边界框,并通过损失函数优化预测框与真实框的匹

2025-08-27 20:21:42 1122 1

原创 自然处理语言NLP: 基于双分支 LSTM 的酒店评论情感分析模型构建与实现

本文介绍了一个酒店评论情感分析系统的完整实现流程,从数据预处理到模型训练。首先对原始评论数据进行清洗和分词,构建字符级词表并转换为数字索引。通过填充和截断统一文本长度为256,使用80/20比例划分训练集和测试集。最后将数据转换为PyTorch张量,并构建批量数据加载器,为后续RNN/CNN模型训练做好准备。整个流程涵盖了文本分类任务的关键步骤,包括数据标准化处理和高效加载的实现。

2025-08-26 20:16:21 804

原创 自然处理语言NLP:LSTM门控机制及其代码实现、GRU、BiLSTM

LSTM(长短期记忆网络)是一种特殊的循环神经网络,通过细胞状态和门控机制解决传统RNN的梯度消失问题。其核心包括遗忘门(决定丢弃哪些信息)、输入门(决定存储哪些新信息)和输出门(控制输出信息)。细胞状态作为"信息高速公路"通过线性操作传递信息,三个门结构(均含sigmoid层)协同工作,实现长期依赖建模。具体实现时,每个时间步通过连接前一时间步的隐藏状态和当前输入,经矩阵运算和激活函数处理后更新细胞状态和隐藏状态。该结构适用于自然语言处理、时间序列预测等长序列任务。

2025-08-25 20:17:01 1319

原创 自然处理语言NLP:RNN、RNN基本结构、输入输出关系、RNNCell、单层单向和双向RNN、BPTT

摘要: RNN(循环神经网络)是一种专为序列数据设计的神经网络,通过隐藏状态传递历史信息,解决传统前馈网络无法处理变长序列和时序依赖的问题。其核心结构包括输入层、隐藏层(计算当前状态$s_t$)和输出层,通过参数共享和循环连接实现时序建模。RNN支持多种输入输出模式(如多对一、多对多),适用于自然语言处理、时间序列预测等任务。PyTorch实现中需配置输入维度、隐藏层大小等参数,通过nn.RNN模块可快速构建模型。

2025-08-24 10:25:16 737

原创 自然处理语言NLP:One-Hot编码、TF-IDF、词向量、NLP特征输入、EmbeddingLayer实现、word2vec

自然语言处理(NLP)是人工智能的重要分支,致力于让计算机理解和处理人类语言。其核心目标包括语言理解、生成、转换和交互能力。NLP广泛应用于文本分类、情感分析、机器翻译、问答系统等领域。关键技术包括分词、词性标注、语义分析等,处理流程涵盖文本预处理、特征表示、模型训练与评估。当前主流技术是基于Transformer的预训练模型(如BERT、GPT)。特征工程是NLP的基础,传统方法包括独热编码和TF-IDF,后者通过计算词频和逆文档频率来衡量词的重要性。NLP技术持续演进,从早期规则方法发展到如今的深度学习

2025-08-21 22:24:56 1207

原创 深度学习-神经网络-训练可视化TensorBoard、验证结果数据化、预训练与迁移学习、模型迁移ONNX

TensorBoard可视化工具在深度学习训练中的应用 摘要:TensorBoard是TensorFlow和PyTorch中常用的可视化工具,可帮助监控训练指标、可视化模型结构和分析数据。本文介绍了TensorBoard的基本使用方法,包括安装依赖、初始化SummaryWriter、记录训练曲线、模型结构、图像、直方图等数据。通过示例代码展示了如何记录损失值、准确率等标量数据,可视化输入图像,保存模型计算图,并分析参数分布。最后介绍了如何启动TensorBoard服务查看可视化结果。该工具可有效辅助深度学习

2025-08-15 20:10:25 836

原创 深度学习-卷积神经网络CNN-膨胀卷积、可分离卷积(空间可分离、深度可分离)、分组卷积

本文介绍了三种高效卷积方法:膨胀卷积通过增大感受野提高特征提取能力;可分离卷积分为空间和深度两种,前者分解二维卷积为两个一维操作,后者将标准卷积拆分为深度卷积和逐点卷积,显著减少计算量;分组卷积通过通道分组独立处理降低参数量。三种方法在保持模型性能的同时优化了计算效率,适用于不同场景的网络设计。文章通过代码示例和计算量对比,展示了这些卷积操作的具体实现和优势。

2025-08-14 19:29:37 1017

原创 深度学习-卷积神经网络CNN-CNN、卷积层(卷积核、卷积计算)、池化层(最大池化、平均池化)

卷积神经网络(CNN)是一种专用于处理网格结构数据的深度学习模型,其核心思想是通过局部感知、权值共享和池化操作来高效提取特征。卷积层使用可学习的卷积核滑动计算局部特征,通过填充和步长控制输出尺寸;多通道卷积则能捕捉更丰富的特征表达。池化层(如最大池化)通过下采样降低数据维度,增强模型鲁棒性。PyTorch提供了便捷的API实现这些操作,使CNN在图像分类等计算机视觉任务中表现出色。

2025-08-13 19:37:14 2315 2

原创 6深度学习Pytorch-神经网络--过拟合欠拟合问题解决(Dropout、正则化、早停法、数据增强)、批量标准化

在机器学习和深度学习中,过拟合(Overfitting)和欠拟合(Underfitting)是模型训练过程中常见的两种问题,直接影响模型的泛化能力(即对未见过的数据的预测能力)。

2025-08-12 23:13:02 1251

原创 5深度学习Pytorch-神经网络--参数初始化、损失函数(MAE、MSE、交叉熵损失)、梯度下降及其优化算法(Momentum、Adagrad、RMSprop、Adam)

全零初始化二、随机初始化1. 均匀分布初始化原理:从均匀分布 U[-a, a] 中采样权重公式:W∼U[−1nin,1nin]W \sim U\left[-\frac{1}{\sqrt{n_{\text{in}}}}, \frac{1}{\sqrt{n_{\text{in}}}}\right]W∼U[−nin​​1​,nin​​1​]其中 n_in 是输入神经元数特点:2. 正态分布初始化原理:从高斯分布采样公式:σ=0.01(常用小方差避免激活值饱和)\sigma

2025-08-11 22:41:09 420

原创 4深度学习Pytorch-神经网络--激活函数(sigmoid、Tanh、ReLU、LReLu、softmax)

如果一个神经元的加权和输入在训练过程中大部分时间都小于0(例如,学习率过高或负的偏置过大),那么它的梯度在反向传播时始终为0,导致该神经元的权重无法再更新,永远“死亡”(输出恒为0,不再参与训练)。图像是一个简单的折线:在原点(0,0)左侧是水平线(y=0),在原点右侧是一条45度角的直线(y=x)。在反向传播过程中,梯度会逐层连乘这些接近0的小数,导致深层网络的梯度变得非常小甚至消失,使得网络难以训练(权重更新缓慢或停滞)。:当某个输入远大于其他时,其对应的输出趋近于 1,其他趋近于 0,梯度接近 0。

2025-08-09 13:20:21 1350

原创 3深度学习Pytorch-神经网络--全连接神经网络、数据准备(构建数据类Dataset、TensorDataset 和数据加载器DataLoader)

深度学习是机器学习的一个分支,核心是通过多层非线性神经网络自动学习数据的抽象特征,无需人工设计特征。与传统机器学习相比,它能处理更复杂的数据(如图像、文本、语音),且随着数据量和计算能力的提升,性能会显著提高。端到端学习:直接从原始数据学习目标输出层次化特征提取:底层学简单特征(边缘),高层学复杂特征(物体部件)大数据驱动:需要海量训练数据表示学习:自动发现数据的内在表示。

2025-08-07 22:33:43 1323

原创 2深度学习Pytorch-自动微分--梯度计算、梯度上下文控制(累计梯度、梯度清零)

本文介绍了自动微分的核心概念与实现方法。主要内容包括:1)计算图构建,通过张量运算动态记录依赖关系;2)关键属性如requires_grad控制梯度跟踪,grad存储梯度值;3)反向传播机制,使用backward()计算梯度并应用链式法则;4)梯度计算类型,涵盖标量/向量/矩阵对向量的梯度计算;5)梯度上下文控制,包括no_grad()禁用梯度、梯度累加与清零操作;6)实际应用示例,如雅可比矩阵计算和梯度下降优化。这些技术为深度学习模型的参数优化提供了数学基础与工程实现。

2025-08-07 20:11:26 828

原创 1深度学习Pytorch-pytorch、tensor的创建、属性、设备和类型转换、数据转换、常见操作(获取元素、元素运算、形状改变、相乘、广播)

PyTorch是由Meta开发的开源深度学习框架,以其灵活性、动态计算图和易用性著称。其核心数据结构Tensor(张量)支持GPU加速、自动微分和丰富的数学运算。Tensor可通过多种方式创建,包括从列表生成、随机初始化、线性序列生成,以及全零/全一张量等。关键属性包括形状、数据类型、存储设备等,并支持CPU/GPU迁移。类型转换可通过.to()方法实现,支持float32、int32、bool等多种类型转换。PyTorch的动态计算图和自动求导机制使其成为研究和工业应用的理想选择。

2025-08-06 21:35:51 1259

原创 pytorch安装

CUDA和cuDNN安装指南 CUDA是NVIDIA开发的并行计算平台,用于在GPU上执行通用计算任务。cuDNN是基于CUDA的深度学习加速库,专门优化神经网络核心操作。安装需按顺序:先安装NVIDIA驱动→CUDA Toolkit→cuDNN。关键注意版本兼容性,确保驱动、CUDA、cuDNN和深度学习框架版本严格匹配。安装后可通过命令行验证,如nvcc -V检查CUDA版本。PyTorch等框架安装时需选择与CUDA版本对应的包。cuDNN需手动下载并复制到CUDA安装目录完成集成。

2025-08-06 19:21:48 1048

原创 06 基于sklearn的机器学习-欠拟合、过拟合、正则化、逻辑回归、k-means算法

摘要:本文系统介绍了机器学习中的欠拟合、过拟合问题及其解决方案。欠拟合源于模型过于简单或特征不足,而过拟合则因模型复杂度过高或数据噪声导致。正则化是解决过拟合的关键技术,包括L2正则化的岭回归(保持所有特征但降低权重)和L1正则化的拉索回归(自动特征选择)。逻辑回归部分重点阐述了Sigmoid函数和交叉熵损失函数的应用,并通过泰坦尼克号数据集示例展示了分类实践。全文通过数学公式和代码实例(sklearn实现)详细解析了不同算法的原理与应用场景。(149字)

2025-08-04 22:08:42 950

原创 05 基于sklearn的机器学习-梯度下降(下)

摘要:梯度下降是机器学习中常用的优化算法,主要包括三种变体:批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)。BGD使用全部样本计算梯度,收敛稳定但计算成本高;SGD每次随机选取单个样本,训练速度快但梯度波动大;MBGD则折中使用小批量样本(16-256个),在稳定性和效率间取得平衡,是工业界默认选择。sklearn提供SGDRegressor实现SGD,支持多种损失函数和正则化选项。实际应用中,MBGD因其高效稳定成为最常用方法,而批量大小是需要调优的超参数。

2025-08-04 21:51:22 949

原创 04 基于sklearn的机器学习-梯度下降(上)

摘要:梯度下降是一种高效优化算法,用于解决正规方程在处理非凸函数和大规模数据时的缺陷。其核心思想是通过迭代调整参数,沿损失函数梯度的反方向更新参数值(W=W-α·g),逐步逼近最优解。学习率α控制更新步长,需合理设置以避免收敛过慢或震荡。单参数和多参数场景均适用,通过计算偏导数确定各参数的梯度方向。算法实现包括初始化参数、计算梯度、更新参数和收敛判断等步骤,适用于各类机器学习模型的参数优化。

2025-08-01 20:03:56 1156

原创 03 基于sklearn的机器学习-线性回归、损失函数及其推导

分类的目标变量是,回归是对做出预测。一、标称型数据属于的一种,用于描述事物的类别或属性,,仅用于区分不同的组别。二、连续型数据(Continuous Data)连续型数据是的定量数据,通常用于衡量事物的数量或程度,。连续型数据可直接参与数值计算,但为了提升模型效果,通常需要预处理:标准化/归一化/离散化。

2025-07-31 20:15:18 866

原创 02 基于sklearn的机器学习-KNN算法、模型选择与调优(交叉验证、朴素贝叶斯算法、拉普拉斯平滑)、决策树(信息增益、基尼指数)、随机森林

KNN算法是一种监督学习方法,通过计算样本间距离进行分类或回归。常用的距离度量包括欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离等,以及余弦相似度和杰卡德相似度。KNN的核心是选择最近的k个样本进行预测,但存在计算量大、维度灾难和K值选择困难等缺点。模型评估可采用交叉验证方法(如K折交叉验证),以提高结果稳定性。此外,文章还介绍了模型保存与加载的方法,以及不同交叉验证技术的优缺点。

2025-07-30 22:30:54 1396 1

原创 01 基于sklearn的机器学习-机器学习的分类、sklearn的安装、sklearn数据集及数据集的划分、特征工程(特征提取与无量纲化、特征降维)

机器学习是人工智能的核心分支,通过算法让计算机从数据中自主学习规律,用于预测、决策等任务。根据数据是否有标签,机器学习可分为监督学习(分类、回归)、无监督学习(聚类、降维)、半监督学习和强化学习。典型的机器学习项目流程包括数据收集、预处理、模型训练与评估。Scikit-learn是Python中广泛使用的机器学习库,提供数据集加载(如鸢尾花、糖尿病数据集)、数据划分(train_test_split)和模型开发工具,支持从数据预处理到模型优化的完整流程。

2025-07-29 23:07:20 884 1

原创 05 OpenCV--图像预处理之图像轮廓、直方图均衡化、模板匹配、霍夫变化、图像亮度变化、形态学变化

本文介绍了图像处理中轮廓特征查找和直方图均衡化的关键技术。在轮廓特征查找部分,详细讲解了外接矩形、最小外接矩形和最小外接圆的算法原理与实现方法,包括旋转卡壳法和Welzl算法的应用,并提供了OpenCV代码示例。直方图均衡化部分简要说明其通过像素值重分布来增强图像对比度的原理。文章通过理论分析结合实践代码,帮助读者掌握图像轮廓特征提取和对比度增强的核心技术。

2025-07-28 23:44:57 1036 1

原创 04 OpenCV--图像预处理之图像梯度处理、图像边缘检测、图像轮廓检测、凸包的相关操作

本文介绍了图像处理中的梯度计算、边缘检测和轮廓分析方法。首先阐述了图像梯度的概念,将图像视为二维函数,通过Sobel、Prewitt等算子计算水平和垂直方向的导数,获取边缘信息。接着详细讲解了完整的边缘检测流程,包括高斯滤波去噪、梯度计算、非极大值抑制和双阈值筛选。最后重点介绍了轮廓处理技术,包括轮廓查找方法(RETR_EXTERNAL、RETR_LIST等)、轮廓绘制以及凸包计算(穷举法和QuickHull法),并给出了OpenCV实现代码。这些技术为图像特征提取和目标识别提供了重要基础。

2025-07-25 19:58:38 1043

原创 03 OpenCV--图像预处理--图像插值方法、边界填充、图像矫正、图像掩膜、图像水印添加、图像噪点消除

图像预处理中常用的像素级插值方法包括:1)最近邻插值,直接取最近像素值,计算简单但易产生锯齿;2)双线性插值,基于4个相邻像素加权计算,平滑但可能模糊;3)像素区域插值,缩小图像时类似均值滤波,放大时根据情况选择最近邻或双线性;4)双三次插值,利用16个相邻像素的三次多项式计算,效果最精细但计算量大。OpenCV中通过warpAffine函数实现这些插值方法,适用于图像缩放、旋转等几何变换。

2025-07-24 23:24:58 929

原创 02 OpenCV--图像预处理--图像色彩空间的转换、灰度处理、图像二值化处理、图像翻转与仿射变换

本文介绍了数字图像处理中的色彩空间转换和图像二值化技术。主要内容包括:1)常见色彩空间(RGB、HSV/HSL、灰度空间)及其转换方法,通过OpenCV实现颜色加法运算;2)三种图像灰度化方法(最大值法、平均值法、加权平均法)的原理与实现;3)图像二值化的阈值处理技术,包括普通阈值法和反阈值法,并给出了相应的Python实现代码。这些基础操作在图像处理中具有广泛应用,为后续更复杂的图像分析任务奠定基础。

2025-07-23 20:27:09 1085

原创 01 OpenCV--图像处理--OpenCV的安装与图像处理的基本操作、图像绘制与视频处理

OpenCV是一款开源的计算机视觉与机器学习库,支持多语言接口和跨平台运行,广泛应用于图像处理、目标检测、视频分析等领域。图像以数组形式存储,彩色图像为(height,width,channels)结构,灰度图像为(height,width)或(height,width,1)。OpenCV提供丰富的图像操作功能,包括读取/显示图像、灰度转换、创建黑白图像、调整大小等。通过NumPy数组可以灵活操作图像像素数据,支持从单像素到多通道的颜色分量处理。

2025-07-22 19:34:42 710

原创 10 Python--模块化编程概念(模块、包、导入)及常见系统模块总结和第三方模块管理

Python模块与包是代码组织的重要工具。模块是包含函数、类和变量的Python文件,实现代码复用和命名隔离,可通过import、from...import等方式导入。模块分为内置模块(如sys、os、math)、第三方模块(如numpy、pandas)和自定义模块。包则是包含__init__.py的目录,用于组织多个模块,形成层级命名空间。init.py文件控制包的初始化和导入行为,可定义包级变量和__all__列表。通过合理使用模块和包,可以构建结构清晰、易于维护的Python项目。

2025-07-18 19:40:53 888

原创 09 Python--迭代器和生成器的区别及其各自实现方式和使用场景

本文介绍了Python中的迭代器和生成器。迭代器是一个对象,通过__iter__()和__next__()方法实现数据流的逐个访问,具有惰性计算和状态性特点。生成器是特殊的迭代器,使用yield关键字简化实现,支持函数式和表达式两种创建方式,在内存效率和语法简洁性上更优。两者都适用于大数据处理和惰性计算场景,但生成器通常是更优选择。关键区别在于生成器自动管理状态,而迭代器需要手动实现。文章还展示了自定义迭代器和生成器的代码示例,并比较了它们的特性和适用场景。

2025-07-17 18:52:02 576

原创 08 Python--向对象编程(OOP)中类、对象、属性 和方法 的基本概念、常见分类以及典型的使用场景

摘要:类(Class)是创建对象的模板,包含属性和方法。对象(Object)是类的实例,拥有类定义的属性和方法。属性分为实例属性(对象独有)和类属性(所有对象共享)。方法包括实例方法(操作实例属性)、类方法(通过@classmethod修饰操作类属性)、静态方法(@staticmethod修饰不依赖实例)和特殊方法(如__init__)。通过类可以创建多个具有不同属性值的对象实例。

2025-07-16 19:43:14 661

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除