HNU练习四 数组 4. 覆盖的点数

【问题描述】

       给定坐标轴上的 n 个区间段,每个段的端点为整数坐标。有些段可以是一个点,可以彼此相交、相互嵌套,甚至重合,对于任意区间,0≤li ≤ ri≤6×105

       任务如下:对于每个 k ∈[1..n],计算被 k 个区间段覆盖的整数坐标点的个数。点 x被端点为 li  ri  的区间段覆盖,当且仅当 li≤ ri

【输入形式】

       输入的第一行为一个整数 n(1≤ n ≤ 2⋅ 105),区间段的个数。

       接下来的 n 行,每行一个整数对 li 和 ri,表示第 i 个区间的端点。
【输出形式】

       输出 n 个用空格分隔的整数cnt1、cnt2、...、cntn,这里 cnti 为被 i 个区间覆盖的点的个数。

【样例输入1】

3
0 3
1 3
3 8

【样例输出1】

6 2 1

【样例输入2】

3
1 3
2 4
5 7

【样例输出2】

5 2 0

【样例说明】

样例1描述如下:

坐标点0、4、5、6、7、8被1个区间段覆盖,点1、2被2个区间段覆盖, 点3倍3个区间段覆盖。

样例2描述如下:

坐标点1、4、5、6、7被1个区间段覆盖,点2、3被两个区间段覆盖,每有点被3个区间段覆盖Points 

这个题目数据比较大,如果用穷举法可能会超时,固我采用了前缀和,想要了解前缀和的可以自己了解一下,比较简单。

#include<iostream>
using namespace std;
int t,sz[600009],cnt[200009],b,e,maxn=0,n;
int main()
{
	cin>>t;
	n=t;
	while(t--)
	{
		cin>>b>>e;
		sz[b]+=1,sz[e+1]-=1;//做前缀数组
		if(maxn<e) maxn=e;//maxn在这记录上界
	}
	for(int i=1;i<=maxn;i++) sz[i]+=sz[i-1];//对前缀的数组开始累加,最后即为最后的状态
	for(int i=0;i<=maxn;i++) cnt[sz[i]]+=1;//对次数进行统计
	for(int i=1;i<=n;i++) cout<<cnt[i]<<" ";//输出

}

附一张解释图

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hnu-yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值