【问题描述】
给定坐标轴上的 n 个区间段,每个段的端点为整数坐标。有些段可以是一个点,可以彼此相交、相互嵌套,甚至重合,对于任意区间,0≤li ≤ ri≤6×105。
任务如下:对于每个 k ∈[1..n],计算被 k 个区间段覆盖的整数坐标点的个数。点 x被端点为 li 和 ri 的区间段覆盖,当且仅当 li≤ x ≤ri。
【输入形式】
输入的第一行为一个整数 n(1≤ n ≤ 2⋅ 105),区间段的个数。
接下来的 n 行,每行一个整数对 li 和 ri,表示第 i 个区间的端点。
【输出形式】
输出 n 个用空格分隔的整数cnt1、cnt2、...、cntn,这里 cnti 为被 i 个区间覆盖的点的个数。
【样例输入1】
3 0 3 1 3 3 8
【样例输出1】
6 2 1
【样例输入2】
3 1 3 2 4 5 7
【样例输出2】
5 2 0
【样例说明】
样例1描述如下:
坐标点0、4、5、6、7、8被1个区间段覆盖,点1、2被2个区间段覆盖, 点3倍3个区间段覆盖。
样例2描述如下:
坐标点1、4、5、6、7被1个区间段覆盖,点2、3被两个区间段覆盖,每有点被3个区间段覆盖Points
这个题目数据比较大,如果用穷举法可能会超时,固我采用了前缀和,想要了解前缀和的可以自己了解一下,比较简单。
#include<iostream>
using namespace std;
int t,sz[600009],cnt[200009],b,e,maxn=0,n;
int main()
{
cin>>t;
n=t;
while(t--)
{
cin>>b>>e;
sz[b]+=1,sz[e+1]-=1;//做前缀数组
if(maxn<e) maxn=e;//maxn在这记录上界
}
for(int i=1;i<=maxn;i++) sz[i]+=sz[i-1];//对前缀的数组开始累加,最后即为最后的状态
for(int i=0;i<=maxn;i++) cnt[sz[i]]+=1;//对次数进行统计
for(int i=1;i<=n;i++) cout<<cnt[i]<<" ";//输出
}
附一张解释图