真题99—巧克力切割(二分查找)

真题99—巧克力切割(二分查找)

1. 问题描述

儿童节时,小明家迎来了 K 位小朋友。为了招待小朋友,小明拿出 N 块巧克力。每块巧克力是由 H**i×W**i 个方格组成的长方形。为确保公平,小明需从这 N 块巧克力中切出 K 块正方形巧克力,且这些正方形巧克力需满足:

  1. 形状为正方形,边长为整数。
  2. 所有切出的正方形巧克力大小相同。

例如,一块 6×5 的巧克力,能够切出 6 块 2×2 的巧克力,或者 2 块 3×3 的巧克力。目标是帮助小明计算出能切出的正方形巧克力的最大边长。

2. 输入输出规范

2.1 输入描述

  • 第一行包含两个整数 NK,其中 1≤N,K≤105。
  • 接下来的 N 行,每行包含两个整数 H**iW**i,表示第 i 块巧克力的尺寸,且 1≤H**i,W**i≤105。
  • 输入保证每位小朋友至少能获得一块 1×1 的巧克力。

2.2 输出描述

输出切出的正方形巧克力的最大可能边长。

2.3 输入输出样例

示例

输入

2 10
6 5
5 6

输出

2

3. 代码实现

3.1 解题 代码

public class _99 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int k = scan.nextInt();

        int maxSide = 0;
        int[] widths = new int[n];
        int[] heights = new int[n];

        for (int i = 0; i < n; i++) {
            widths[i] = scan.nextInt();
            heights[i] = scan.nextInt();
            //计算巧克力最短边,可切割最长变长
            if (maxSide == 0) {
                maxSide = Math.max(widths[i], heights[i]);
            } else {
                maxSide = Math.max(maxSide, Math.min(widths[i], heights[i]));
            }
        }

        // 二分查找的左边界,最小边长为 1
        int left = 1;
        // 二分查找的右边界,最大边长为 maxSide
        int right = maxSide;
        // 开始二分查找,当左边界小于等于右边界时继续循环
        while (left <= right) {
            // 计算中间值,作为当前尝试的边长
            int mid = left + (right - left) / 2;
            // 用于统计当前边长下能切出的正方形巧克力总块数
            int count = 0;
            // 遍历每块巧克力,计算能切出的边长为 mid 的正方形数量
            for (int i = 0; i < n; i++) {
                // 计算当前巧克力能切出的边长为 mid 的正方形数量并累加到 count 中
                count += (widths[i] / mid) * (heights[i] / mid);
            }
            // 如果切出的总块数大于等于 k,说明当前边长可行,尝试更大的边长
            if (count >= k) {
                left = mid + 1;
            } else {
                // 否则,说明当前边长太大,尝试更小的边长
                right = mid - 1;
            }
        }
        System.out.println(right);
    }
}

3.2 代码逻辑解析

  1. 数据读取:程序首先使用 Scanner 从标准输入读取巧克力的数量 N、小朋友的数量 K,以及每块巧克力的宽度 W**i 和高度 H**i,并将这些数据存储在数组 widthsheights 中。
  2. 确定二分查找范围:通过遍历输入的巧克力尺寸,找到所有巧克力中可能的最大边长 maxSide。将二分查找的左边界 left 初始化为 1,右边界 right 初始化为 maxSide
  3. 二分查找过程:在 left 小于等于 right 的条件下,计算中间值 mid。遍历每块巧克力,计算以 mid 为边长能切出的正方形巧克力数量,并累加到 count 中。如果 count 大于或等于 K,说明当前边长 mid 可行,将 left 调整为 mid + 1,尝试更大的边长;否则,将 right 调整为 mid - 1,尝试更小的边长。
  4. 结果输出:循环结束后,right 即为满足条件的最大边长,将其输出。

4. 二分法使用及适用场景

4.1 二分法原理

二分法,也称为折半查找法,是一种在有序数组或具有有序性质的数据结构中高效查找目标值的算法。其基本思想是将数据集合分成两部分,通过比较目标值与中间元素的大小,决定继续在左半部分还是右半部分进行查找,每次查找都将数据集合的规模减半,从而显著提高查找效率。

4.2 适用场景

  1. 有序数组查找:最常见的应用场景是在有序数组中查找特定元素。例如,在一个升序排列的整数数组中查找某个目标整数,二分法可以将查找时间复杂度从线性时间 O(n) 降低到对数时间 O(logn)。
  2. 求解最值问题:当问题可以转化为在一个单调递增或递减的函数中寻找满足特定条件的最值时,二分法也适用。在巧克力切割问题中,随着正方形边长的增加,能切出的巧克力块数会单调递减。通过二分法,我们可以在可能的边长范围内快速找到满足小朋友数量要求的最大边长。
  3. 查找满足特定条件的边界值:二分法可用于查找满足某种条件的边界值。例如,在一个有序数组中查找第一个大于或等于某个值的元素,或者查找最后一个小于或等于某个值的元素。s

围内快速找到满足小朋友数量要求的最大边长。
3. 查找满足特定条件的边界值:二分法可用于查找满足某种条件的边界值。例如,在一个有序数组中查找第一个大于或等于某个值的元素,或者查找最后一个小于或等于某个值的元素。s

二分法在解决具有单调性和可二分性的问题时表现出色,能够显著提高算法的时间效率,降低时间复杂度。

<think>好的,我现在要解决用户在IAR编译器中遇到的错误:“incomplete type is not allowed”。首先,我需要理解这个错误的含义和常见原因。根据我的知识库,这个错误常发生在代码中使用了未完全定义的类型,比如结构体或联合体声明了但未定义,或者前向声明了某个类型但没有提供完整的定义。 首先,我应该检查用户代码中是否有结构体或联合体的声明但没有定义的情况。比如,如果有一个结构体声明为`struct MyStruct;`,但没有后续的完整定义,那么在需要该结构体大小或成员的地方,编译器就会报这个错误。这时候,需要用户补全结构体的定义,包括成员变量。 其次,检查是否在头文件中只声明了类型而没有包含定义。例如,如果在头文件中使用前向声明,但在使用该类型的源文件中没有包含实际的定义头文件,这也会导致错误。此时,需要确保在使用类型的地方包含了正确的头文件,或者将前向声明替换为完整的定义。 另外,还要考虑typedef的问题。如果用户使用了typedef创建别名,但原始类型未完全定义,同样会引发错误。例如,`typedef struct MyStruct MyType;`之后,如果尝试使用MyType但MyStruct尚未定义,就会出错。需要确保在使用typedef之前,原始类型已经被完整定义。 此外,数组声明中的类型不完整也是一个常见原因。比如声明数组时,如果元素类型未完全定义,编译器无法确定数组的大小,导致错误。需要检查数组声明中的类型是否已经完整定义。 可能还有其他情况,比如在C和C++混合编程时,如果没有正确使用extern "C",或者在头文件中遗漏了必要的包含,也可能导致类型不完整。需要用户检查这些方面。 接下来,我需要将这些可能的原因整理成清晰的解决步骤,并给出具体的代码示例,帮助用户理解如何修改。同时,根据用户提供的引用内容,虽然引用[1]和引用[2]是关于其他错误的,但用户可能希望看到类似的结构,即分点说明解决方案,并引用相关资源。 最后,生成相关问题,帮助用户进一步了解可能相关的编译错误,比如类型未定义、前向声明问题等。这样用户可以有更全面的认识,预防其他类似错误的发生。</think>### IAR编译器错误'incomplete type is not allowed'解决方案 该错误表示代码中使用了**未完全定义的类型**,编译器无法确定其内存布局或成员信息。以下是具体原因及解决方法: #### 1. 结构体/联合体未定义完整 若声明了结构体但未定义成员,在实例化时会报错: ```c struct MyStruct; // 前向声明不完整 struct MyStruct var; // 错误:使用未完成类型 ``` **解决方案**:补全类型定义 ```c struct MyStruct { int id; char name[20]; }; ``` #### 2. 头文件包含缺失 当跨文件使用类型时,需确保定义可见: ```c // file.h struct Data; // 前向声明 // file.c struct Data { // 实际定义 int value; }; ``` **解决方案**:在使用该类型的文件中包含定义头文件 ```c #include "file.c" // 包含实际定义 ``` #### 3. typedef别名问题 使用typedef时原始类型必须完整: ```c typedef struct Node NodeT; // 前向声明 NodeT* ptr; // 允许指针声明 NodeT instance; // 错误:不完整类型 ``` **解决方案**:先完成类型定义再typedef ```c struct Node { int data; struct Node* next; }; typedef struct Node NodeT; ``` #### 4. 数组声明不完整 数组元素类型必须完全定义: ```c struct Element; struct Element arr[10]; // 错误:元素类型未定义 ``` **解决方案**: ```c struct Element { int type; float value; }; struct Element arr[10]; // 合法 ``` #### 调试建议 1. 在IAR工程中搜索错误行号定位问题代码 2. 使用Go to Definition功能追踪类型定义 3. 检查所有头文件包含链 4. 确认没有循环依赖的头文件 编译器需要知道类型的完整信息才能: - 计算sizeof大小 - 分配内存空间 - 访问成员变量 - 进行类型对齐 [^1]: 类似类型转换错误可参考浮点转整型的类型适配问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值