N皇后问题

https://ac.nowcoder.com/acm/contest/59977/1070

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
 

题目描述

给出一个n×nn\times nn×n的国际象棋棋盘,你需要在棋盘中摆放nnn个皇后,使得任意两个皇后之间不能互相攻击。具体来说,不能存在两个皇后位于同一行、同一列,或者同一对角线。请问共有多少种摆放方式满足条件。

输入描述:

一行,一个整数n(1≤n≤12)n(1\le n \le 12)n(1≤n≤12),表示棋盘的大小。

输出描述:

输出一行一个整数,表示总共有多少种摆放皇后的方案,使得它们两两不能互相攻击。

示例1

输入

4

输出

2

思路:按照行来dfs,同时使用col,dg,udg三个数组来记录列,对角线和反对角线是否有棋子。

当我们的u,也就是棋子数等于n的时候,就是我们把棋子安放完成,返回即可。

这里我们的u也同时是行数,这里i则可以理解为列数,从0到n-1列,也就是n列。

我们可以发现一个规律,一条对角线上面的x,y坐标之和相同,例如(1,3),(2,2)或者(2,3)(3,2)。

那么我们把每个点的对应对角线就是dg[u+i]。

这样看来对角线像从左上角依次向下,而反对角线则是从右上角开始。

我们可以发现我们用(i-u)也就是列数减去行数可以表示反对角线的下标,因为这可能会导致为负数,所以我们来加上一个n杜绝这种可能。

最后我们搜索过之后要记得恢复状态,不影响后面的搜索。

代码实现:

#include<bits/stdc++.h>
using namespace std;
const int N = 30;
bool col[N],dg[N],udg[N];
int n,ans=0;
void dfs(int u){
    if(u == n){
        ans ++;
        return;
    }
    for(int i = 0; i < n; i ++){
        if (!col[i] && !dg[u + i] && !udg[n - u + i]){
            col[i] = dg[u + i] = udg[n - u + i] = true;//列,双对角线不合格
            dfs(u + 1);//搜索下一行
            col[i] = dg[u + i] = udg[n - u + i] = false;
        }
    }
}
int main(){
    cin >> n;
    dfs(0);
    cout << ans;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值