https://ac.nowcoder.com/acm/contest/59977/1070
链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
题目描述
给出一个n×nn\times nn×n的国际象棋棋盘,你需要在棋盘中摆放nnn个皇后,使得任意两个皇后之间不能互相攻击。具体来说,不能存在两个皇后位于同一行、同一列,或者同一对角线。请问共有多少种摆放方式满足条件。
输入描述:
一行,一个整数n(1≤n≤12)n(1\le n \le 12)n(1≤n≤12),表示棋盘的大小。
输出描述:
输出一行一个整数,表示总共有多少种摆放皇后的方案,使得它们两两不能互相攻击。
示例1
输入
4
输出
2
思路:按照行来dfs,同时使用col,dg,udg三个数组来记录列,对角线和反对角线是否有棋子。
当我们的u,也就是棋子数等于n的时候,就是我们把棋子安放完成,返回即可。
这里我们的u也同时是行数,这里i则可以理解为列数,从0到n-1列,也就是n列。
我们可以发现一个规律,一条对角线上面的x,y坐标之和相同,例如(1,3),(2,2)或者(2,3)(3,2)。
那么我们把每个点的对应对角线就是dg[u+i]。
这样看来对角线像从左上角依次向下,而反对角线则是从右上角开始。
我们可以发现我们用(i-u)也就是列数减去行数可以表示反对角线的下标,因为这可能会导致为负数,所以我们来加上一个n杜绝这种可能。
最后我们搜索过之后要记得恢复状态,不影响后面的搜索。
代码实现:
#include<bits/stdc++.h>
using namespace std;
const int N = 30;
bool col[N],dg[N],udg[N];
int n,ans=0;
void dfs(int u){
if(u == n){
ans ++;
return;
}
for(int i = 0; i < n; i ++){
if (!col[i] && !dg[u + i] && !udg[n - u + i]){
col[i] = dg[u + i] = udg[n - u + i] = true;//列,双对角线不合格
dfs(u + 1);//搜索下一行
col[i] = dg[u + i] = udg[n - u + i] = false;
}
}
}
int main(){
cin >> n;
dfs(0);
cout << ans;
return 0;
}