c++通行路线(acwing)

在郊区有 N 座通信基站,P条 双向 电缆,第 i 条电缆连接基站 Ai 和 Bi。

特别地,1 号基站是通信公司的总站,N 号基站位于一座农场中。

现在,农场主希望对通信线路进行升级,其中升级第 i 条电缆需要花费 Li。

电话公司正在举行优惠活动。

农产主可以指定一条从 1 号基站到 N号基站的路径,并指定路径上不超过 K 条电缆,由电话公司免费提供升级服务。

农场主只需要支付在该路径上剩余的电缆中,升级价格最贵的那条电缆的花费即可。

求至少用多少钱可以完成升级。

输入格式

第 11 行:三个整数 N,P,K。

第 2..P+1行:第 i+1 行包含三个整数 Ai,Bi,Li。

输出格式

包含一个整数表示最少花费。

若 1 号基站与 N 号基站之间不存在路径,则输出 −1。

数据范围

0≤K<N≤1000,
1≤P≤10000,
1≤Li≤1000000

输入样例:

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

输出样例:

4

代码如下

#include<cstring>
#include<iostream>
#include<algorithm>
#include<deque>

using namespace std;

typedef pair<int, int> PII;
const int N = 1010, M = 20010, INF = 0x3f3f3f3f;

int n, m, k;
int h[N], w[M], e[M], ne[M], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

bool check(int bound)
{
    memset(dist, 0x3f, sizeof dist);
    memset(st, 0, sizeof st);
    
    dist[1] = 0;
    
    deque<int> q;
    q.push_front(1);
    
    while(q.size())
    {
        auto t = q.front();
        q.pop_front();
        
        if(st[t]) continue;
        st[t] = true;
        
        for(int i = h[t]; ~ i; i = ne[i])
        {
            int j = e[i], x = w[i] > bound;
            if(dist[j] > dist[t] + x)
            {
                dist[j] = dist[t] + x;
                if(!x) q.push_front(j);
                else q.push_back(j);
            }
        }
    }
    return dist[n] <= k;
}

int main()
{
    cin >> n >> m >> k;
    
    memset(h, -1, sizeof h);
    
    while(m --)
    {
        int a, b, c;
        scanf("%d%d%d",&a, &b, &c);
        add(a, b, c), add(b, a, c);
    }
    
    int l = 0, r = 1e6 + 1;
    while(l < r)
    {
        int mid = l + r >> 1;
        if(check(mid)) r = mid;
        else l = mid + 1;
    }
    
    if(r == 1e6 + 1) cout << -1 << endl;
    else cout << r << endl;
    
    return 0;
}
#include <bits/stdc++.h>
using namespace std;
#define endl "\n"
typedef pair<int, int> PII;
const int INF = 0x3f3f3f3f;
const int N = 1010, M = 20010, K = 1010;

int n, m, k;
int h[N], w[M], e[M], ne[M], idx;
int dist[N][K];  //dist[x][k]表示从1到达x节点,途中使用k次免费升级的最小花费
bool vis[N][K];

void add(int a, int b, int c) {
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int spfa() {
    memset(dist, 0x3f, sizeof dist);
    dist[1][0] = 0;
    queue<PII> q;
    q.emplace(1, 0);
    vis[1][0] = true;

    while (!q.empty()) {
        auto [v, cnt] = q.front();
        q.pop();

        vis[v][cnt] = false;

        for (int i = h[v]; ~i; i = ne[i]) {
            int j = e[i];
            if (cnt < k && dist[j][cnt + 1] > dist[v][cnt]) {  //使用一次免费升级
                dist[j][cnt + 1] = dist[v][cnt];
                if (!vis[j][cnt + 1]) {
                    q.emplace(j, cnt + 1);
                    vis[j][cnt + 1] = true;
                }
            }
            if (dist[j][cnt] > max(w[i], dist[v][cnt])) {  //不使用免费升级
                dist[j][cnt] = max(w[i], dist[v][cnt]);
                if (!vis[j][cnt]) {
                    q.emplace(j, cnt);
                    vis[j][cnt] = true;
                }
            }
        }
    }

    int res = INF;
    for (int i = 0; i <= k; i++) {
        res = min(res, dist[n][i]);
    }
    return res == INF ? -1 : res;
}

int main() {
    scanf("%d%d%d", &n, &m, &k);

    memset(h, -1, sizeof h);
    while (m--) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c), add(b, a, c);
    }

    cout << spfa() << endl;

    return 0;
}

第二个代码来自AcWing 340. 通信线路 - AcWing

二分:求最小值,使用二分,如果边权大于当前中间值,放入队尾,否则放在对头

分层图:重点在函数的最后几行,再使用了1~k层分层图中,寻找最小的值emplace和push作用一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值