图论(模板)

1.朴素版dijkstra(n^2)

这个是遍历每一个点,找出距离原点最小的点,更新该点距其他点的最短距离。每个点只遍历一次

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 510;
int n, m;
int g[N][N]; //稠密图一般使用邻接矩阵
int dist[N]; //记录每个节点距离起点的距离
bool st[N]; //True表示已经确定最短路 属于s集合

int dijkstra() {
    //所有节点距离起点的距离初始化为无穷大
    memset(dist, 0x3f, sizeof dist);
    //起点距离自己的距离为零
    dist[1] = 0;

    //迭代n次,每次可以确定一个点到起点的最短路
    for (int i = 0; i < n; ++i) {
        int t = -1;
        //t的作用?

        for (int j = 1; j <= n; ++j) {
            //不在st集合,并且
            //如果没有更新过,则进行更新, 或者发现更短的路径,则进行更新(找到距起点最近的点)
            if (!st[j] && (t == -1 || dist[j] < dist[t])) {
                t = j;
            }
        }

        //加入到st集合中
        st[t] = true;

        //找到了距离最小的点t,并用最小的点t去更新其他的点到起点的距离
        for (int j = 1; j <= n; ++j) {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }
    }

    // 如果起点到达不了n号节点,则返回-1
    if (dist[n] == 0x3f3f3f3f) return -1;
    // 返回起点距离n号节点的最短距离
    return dist[n];
}

int main() {
    cin >> n >> m;
    //所有节点之间的距离初始化为无穷大
    memset(g, 0x3f, sizeof g);
    // 0x3f 0x3f3f3f3f 的区别?

    while (m--) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = min(g[a][b], c); //如果有重边,请保留权值最小的一条边
    }

    cout << dijkstra() << endl;

    return 0;
}

一个小优化,在最后一个循环中

#include<iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510, M = 100010;

int h[N], e[M], ne[M], w[M], idx;//邻接表存储图
int state[N];//state 记录是否找到了源点到该节点的最短距离
int dist[N];//dist 数组保存源点到其余各个节点的距离
int n, m;//图的节点个数和边数

void add(int a, int b, int c)//插入边
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void Dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));//dist 数组的各个元素为无穷大
    dist[1] = 0;//源点到源点的距离为置为 0
    for (int i = 0; i < n; i++)
    {
        int t = -1;
        for (int j = 1; j <= n; j++)//遍历 dist 数组,找到没有确定最短路径的节点中距离源点最近的点t
        {
            if (!state[j] && (t == -1 || dist[j] < dist[t]))
                t = j;
        }

        state[t] = 1;//state[i] 置为 1。

        for (int j = h[t]; j != -1; j = ne[j])//遍历 t 所有可以到达的节点 i
        {
            int i = e[j];
            dist[i] = min(dist[i], dist[t] + w[j]);//更新 dist[j]
        }


    }
}

int main()
{
    memset(h, -1, sizeof(h));//邻接表初始化

    cin >> n >> m;
    while (m--)//读入 m 条边
    {
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);
    }

    Dijkstra();
    if (dist[n] != 0x3f3f3f3f)//如果dist[n]被更新了,则存在路径
        cout << dist[n];
    else
        cout << "-1";
}

2.堆优化版dijkstra(mlogn)

没了判断最小距离的循环(用了优先队列)

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>//堆的头文件

using namespace std;

typedef pair<int, int> PII;//堆里存储距离和节点编号

const int N = 1e6 + 10;

int n, m;//节点数量和边数
int h[N], w[N], e[N], ne[N], idx;//邻接矩阵存储图
int dist[N];//存储距离
bool st[N];//存储状态

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);//距离初始化为无穷大
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;//小根堆
    heap.push({0, 1});//插入距离和节点编号

    while (heap.size())
    {
        auto t = heap.top();//取距离源点最近的点
        heap.pop();

        int ver = t.second, distance = t.first;//ver:节点编号,distance:源点距离ver 的距离

        if (st[ver]) continue;//如果距离已经确定,则跳过该点
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])//更新ver所指向的节点距离
        {
            int j = e[i];
            if (dist[j] > dist[ver] + w[i])
            {
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});//距离变小,则入堆
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    cout << dijkstra() << endl;

    return 0;
}

3.SPFA(n)

能够判断有负环,有非负权的环的图

如果某个已经遍历过的点突然距原点的距离又变小了,那么该点继续入队再次遍历

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 100010;
int h[N], e[N], w[N], ne[N], idx;//邻接表,存储图
int st[N];//标记顶点是不是在队列中
int dist[N];//保存最短路径的值
int q[N], hh, tt = -1;//队列

void add(int a, int b, int c){//图中添加边和边的端点
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

void spfa(){
    q[++tt] = 1;//从1号顶点开始松弛,1号顶点入队
    dist[1] = 0;//1号到1号的距离为 0
    st[1] = 1;//1号顶点在队列中
    while(tt >= hh){//不断进行松弛
        int a = q[hh++];//取对头记作a,进行松弛
        st[a] = 0;//取完队头后,a不在队列中了
        for(int i = h[a]; i != -1; i = ne[i])//遍历所有和a相连的点
        {
            int b = e[i], c = w[i];//获得和a相连的点和边
            if(dist[b] > dist[a] + c){//如果可以距离变得更短,则更新距离,可以解决环的问题(要求是非负环)

                dist[b] = dist[a] + c;//更新距离

                if(!st[b]){//如果没在队列中
                    q[++tt] = b;//入队
                    st[b] = 1;//打标记
                }
            }
        }
    }
}
int main(){
    memset(h, -1, sizeof h);//初始化邻接表
    memset(dist, 0x3f, sizeof dist);//初始化距离
    int n, m;//保存点的数量和边的数量
    cin >> n >> m;
    for(int i = 0; i < m; i++){//读入每条边和边的端点
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);//加入到邻接表
    }
    spfa();
    if(dist[n] == 0x3f3f3f3f )//如果到n点的距离是无穷,则不能到达 
        cout << "impossible";
    else cout << dist[n];//否则能到达,输出距离
    return 0;
}

SPFA判断负环

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 2010, M = 10010;

int n, m;
int h[N], w[M], e[M], ne[M], idx;
int dist[N], cnt[N];//cnt记录一条路的点数
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

bool spfa()
{
    queue<int> q;
//与距离无关,因此不需要初始化距离
    for (int i = 1; i <= n; i ++ )
    {
        st[i] = true;
        q.push(i);//由于不是到负环有没有在1号点,因此我们需要加入所有点
    }

    while (q.size())
    {
        int t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;

                if (cnt[j] >= n) return true;//遍历完所有点,如果不满足时说明没负环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }

    if (spfa()) puts("Yes");
    else puts("No");

    return 0;
}

作者:yxc
链接:https://www.acwing.com/activity/content/code/content/48499/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

4.拓扑排序

貌似只有一个点是入度为0

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010;
int e[N], ne[N], idx;//邻接表存储图
int h[N];
int q[N], hh = 0, tt = -1;//队列保存入度为0的点,也就是能够输出的点,
int n, m;//保存图的点数和边数
int d[N];保存各个点的入度

void add(int a, int b){
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void topsort(){
    for(int i = 1; i <= n; i++){//遍历一遍顶点的入度。
        if(d[i] == 0)//如果入度为 0, 则可以入队列
            q[++tt] = i;
    }
    while(tt >= hh){//循环处理队列中点的
        int a = q[hh++];
        for(int i = h[a]; i != -1; i = ne[i]){//循环删除 a 发出的边
            int b = e[i];//a 有一条边指向b
            d[b]--;//删除边后,b的入度减1
            if(d[b] == 0)//如果b的入度减为 0,则 b 可以输出,入队列
                q[++tt] = b;
        }
    }
    if(tt == n - 1){//如果队列中的点的个数与图中点的个数相同,则可以进行拓扑排序
        for(int i = 0; i < n; i++){//队列中保存了所有入度为0的点,依次输出
            cout << q[i] << " ";
        }
    }
    else//如果队列中的点的个数与图中点的个数不相同,则可以进行拓扑排序
        cout << -1;//输出-1,代表错误
}


int main(){
    cin >> n >> m;//保存点的个数和边的个数
    memset(h, -1, sizeof h);//初始化邻接矩阵
    while (m -- ){//依次读入边
        int a, b;
        cin >> a >> b;
        d[b]++;//顶点b的入度+1
        add(a, b);//添加到邻接矩阵
    }
    topsort();//进行拓扑排序
    return 0;
}

5.prim求最小生成树(n^2)

prim和kraskal中都是先遍历最小的边,因此距离根越近,边权越小。

注意在存储边的时候是双向边,所以要g[a,b]=g[b,a](相当于存的是一个对称矩阵),区分Kraskal

 

 

 

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510;
int g[N][N];//存储图
int dt[N];//存储各个节点到生成树的距离
int st[N];//节点是否被加入到生成树中
int pre[N];//节点的前去节点
int n, m;//n 个节点,m 条边

void prim()
{
    memset(dt,0x3f, sizeof(dt));//初始化距离数组为一个很大的数(10亿左右)
    int res= 0;
    dt[1] = 0;//从 1 号节点开始生成 
    for(int i = 0; i < n; i++)//每次循环选出一个点加入到生成树
    {
        int t = -1;
        for(int j = 1; j <= n; j++)//每个节点一次判断
        {
            if(!st[j] && (t == -1 || dt[j] < dt[t]))//如果没有在树中,且到树的距离最短,则选择该点
                t = j;
        }

        //2022.6.1 发现测试用例加强后,需要判断孤立点了
        //如果孤立点,直返输出不能,然后退出
        if(dt[t] == 0x3f3f3f3f) {
            cout << "impossible";
            return;
        }


        st[t] = 1;// 选择该点
        res += dt[t];
        for(int i = 1; i <= n; i++)//更新生成树外的点到生成树的距离
        {
            if(dt[i] > g[t][i] && !st[i])//从 t 到节点 i 的距离小于原来距离,则更新。
            {
                dt[i] = g[t][i];//更新距离
                pre[i] = t;//从 t 到 i 的距离更短,i 的前驱变为 t.
            }
        }
    }

    cout << res;

}

void getPath()//输出各个边
{
    for(int i = n; i > 1; i--)//n 个节点,所以有 n-1 条边。

    {
        cout << i <<" " << pre[i] << " "<< endl;// i 是节点编号,pre[i] 是 i 节点的前驱节点。他们构成一条边。
    }
}

int main()
{
    memset(g, 0x3f, sizeof(g));//各个点之间的距离初始化成很大的数
    cin >> n >> m;//输入节点数和边数
    while(m --)
    {
        int a, b, w;
        cin >> a >> b >> w;//输出边的两个顶点和权重
        g[a][b] = g[b][a] = min(g[a][b],w);//存储权重
    }

    prim();//求最下生成树
    //getPath();//输出路径
    return 0;
}
作者:Hasity
链接:https://www.acwing.com/solution/content/38312/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

6.Kraskal求最小生成树(mlogm)

存边的时候就是存的双向边,不是单向边

 

 

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 100010;
int p[N];//保存并查集

struct E{
    int a;
    int b;
    int w;
    bool operator < (const E& rhs){//通过边长进行排序
        return this->w < rhs.w;
    }

}edg[N * 2];
int res = 0;

int n, m;
int cnt = 0;
int find(int a){//并查集找祖宗
    if(p[a] != a) p[a] = find(p[a]);
    return p[a];
}
void klskr(){
    for(int i = 1; i <= m; i++)//依次尝试加入每条边
    {
        int pa = find(edg[i].a);// a 点所在的集合
        int pb = find(edg[i].b);// b 点所在的集合
        if(pa != pb){//如果 a b 不在一个集合中,同时也避免了自环,即自己连自己
            res += edg[i].w;//a b 之间这条边要
            p[pa] = pb;// 合并a b
            cnt ++; // 保留的边数量+1
        }
    }
}
int main()
{

    cin >> n >> m;
    for(int i = 1; i <= n; i++) p[i] = i;//初始化并查集
    for(int i = 1; i <= m; i++){//读入每条边
        int a, b , c;
        cin >> a >> b >>c;
        edg[i] = {a, b, c};
    }
    sort(edg + 1, edg + m + 1);//按边长排序
    klskr();
    if(cnt < n - 1) {//如果保留的边小于点数-1,则不能连通
        cout<< "impossible";
        return 0;
    }
    cout << res;
    return 0;
}

作者:Hasity
链接:https://www.acwing.com/solution/content/104383/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值