- 博客(9)
- 收藏
- 关注
原创 AI篡改图片检测(金融场景)
Faster R-CNN是一种两阶段的目标检测算法,其核心思想是先通过卷积神经网络提取特征,然后使用区域提议网络(Region Proposal Network, RPN)生成候选区域,最后通过分类器和回归器进行物体检测。Faster R-CNN的训练过程涉及RPN网络的训练和Faster R-CNN网络的训练。RPN网络训练时,使用ImageNet预训练的模型初始化参数,仅训练RPN部分;随后,利用RPN生成的候选区域训练Faster R-CNN的分类器和边界框回归器,这一步通常会微调特征提取器的参数。
2024-10-11 18:40:13 394
原创 Datawhale X 李宏毅苹果书 AI夏令营-Task3
1、重新设计一个灵活性更大的模型2、增加更多的特征3、用深度学习1、修改优化方式,使得能够从模型中找到这个最优的函数2、调整学习率和其他超参数。
2024-09-02 22:43:55 433
原创 【Datawhale X 李宏毅苹果书 AI夏令营】
分段线性曲线是一种由多个线性片段组成的模型,用于解决标准线性模型在表示复杂关系时的局限性分段线性曲线可以看作是一个常数再加上一群。
2024-08-31 21:27:25 1141
原创 Datawhale AI夏令营第四期魔搭-AIGC文生图方向Task1笔记
不过很明显第一张图片的手存在问题,通过之后几天的学习,代码会得到改进并更加完善。感兴趣的同学可以先玩一玩,深入学习后在baseline的基础上进行改进。
2024-08-07 10:38:31 377
原创 Datawhale AI夏令营(第三期)-逻辑推理TASK2
整体代码主要包括和两个大模块。包括大模型的处理函数、大模型返回结果抽取、多线程处理及答案生成的启动。这里代码核心是,动手能力强的小伙伴可以从这里入手开始自己的上分之路~为了保证整体代码性能使用多线程处理请求。存在的目的是由于目前使用了api调用在线开源大模型,因为网络、模型能力等原因会导致有一些结果会出现缺失。(比如大模型回答时,没有明确给出ABCD的结果,而返回的空值。也有时因为网络retry模块机会使用结束后,依然没有提取到结果会跳过某个问题。
2024-07-30 22:03:35 392
原创 Datawhale AI夏令营第二期Task3-尝试使用深度学习方案
从得分上看,stacking融合优于多个模型的结果进行加权平均融合,但得分相差不大,只差了3分左右。
2024-07-19 21:06:41 245
原创 Datawhale AI夏令营第二期Task2:入门lightgbm,开始特征工程
其中id为房屋id,dt为日标识,训练数据dt最小为11,不同id对应序列长度不同;type为房屋类型,通常而言不同类型的房屋整体消耗存在比较大的差异;target为实际电力消耗,也是我们的本次比赛的预测目标。下面进行简单的可视化分析,帮助我们对数据有个简单的了解。
2024-07-17 23:20:41 1932 1
原创 Datawhale AI夏令营第二期Task1——机器学习 电力需求预测挑战赛
赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用1-N进行标识。即1为数据集最近一天,其中1-10为测试集数据。数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。
2024-07-17 21:59:31 420
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人