动态规划23:413. 等差数列划分

动态规划解题步骤:

1.确定状态表示:dp[i]是什么

2.确定状态转移方程:dp[i]等于什么

3.初始化:确保状态转移方程不越界

4.确定填表顺序:根据状态转移方程即可确定填表顺序

5.确定返回值

题目链接:413. 等差数列划分 - 力扣(LeetCode)

题解:

1.状态表示:dp[i]表示以nums[i]结尾且是等差数列子数组的个数

2.状态转移方程:

求状态转移方程之前,先理解:如果[a,b,c,d,e]是等差数列,[d,e,f]也是等差数列,那么[a,b,c,d,e,f]是等差数列。所以dp[i]可以根据dp[i-1]推出,如果nums[i]和nums[i-1]、nums[i-2]成等差数列,那么dp[i-1]所指的等差数列再加上nums[i]也一定是一个等差数列;同理,如果nums[i]和nums[i-1]、nums[i-2]不成等差数列,那么以nums[i]结尾的一定没有等差数列。

因此状态转移方程:if(nums[i]-nums[i-1]==nums[i-1]-nums[i-2]) dp[i]=dp[i-1]+1;
                                else dp[i]=0;

3.初始化:dp[0]=dp[1]=0 等差数列至少有三个数

4.填表顺序:从左向右依次填写

5.返回值:返回dp表中的最大值

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        //dp[i]表示以nums[i]结尾是等差数列子数组的个数
        //nums[i]-nums[i-1]=nums[i-1]-nums[i-2] dp[i]=dp[i-1]+1
        size_t n=nums.size();
        //处理边界条件
        if(n==1||n==2) return 0;
        //创建dp表
        vector<int> dp(n);
        //初始化
        dp[0]=dp[1]=0;
        //填表
        for(int i=2;i<n;++i)
        {
            if(nums[i]-nums[i-1]==nums[i-1]-nums[i-2])
                dp[i]=dp[i-1]+1;
            else 
                dp[i]=0;
        }
        //返回值
        int ans=0;
        for(auto e:dp) ans+=e;
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南林yan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值