【C++】高精度运算(未完)

【C++】高精度运算

1. 高精度加法

原理:

由于c++不能进行位数过高的数据运算,所以要通过模拟数组来进行运算,首先是加法。通过char或string型数据输入字符来模拟数字的输入,数组下表对应的元素应当是处于同一位置的数字,下标相同的两个元素相加表示的既是结果。

需要注意的是:
  1. 输入的是字符串,但是相加的时候必须要转换为数字,所以将字符型减去‘0’(0的字符)即可得到int型的数字。
  2. 输入的数组从最高位开始输入,不利于计算,应该如下:
    a[i] = 2 0 2 3 (四位数)
    b[i] = 1 1 4 (三位数)
    直接同数组位相加的话:↓
    result[i] = 3 1 6 3 与正确结果: 2 1 3 7 相差甚远
    倒叙相加相加的话:↓
    a1[i] = 3 2 0 2
    b1[i] = 4 1 1 相加↓
    result[i] = 7 3 1 2 (倒叙输出正好与正确答案相符)
  3. 倒序输出答案。这里有一个小细节,如果最高位大于9,则需要多输出一个result[i]

代码部分:

  1. 核心代码:
//核心代码(相加、进位)
	for(int i = 0; i < max(strlen(a1), strlen(b1)); i++)
	{ 
		result[i] += (a[i] + b[i]); 	//按位相加 
		result[i + 1] = result[i] / 10; //进位 
		result[i] %= 10; 	    		//本位mod10 
	}
  1. 完整代码:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 2010; 
char a1[N], b1[N];//分表表示字符串类型的两个加数 
int a[N], b[N], result[N];//a[],b[]表示int类型的两个加数,方便运算, 
int main()
{
	cin >> a1 >> b1;
	//倒序存储,将a1的各个数存入a数组中
	for(int i = 0; i < strlen(a1); i++)
	{
		a[strlen(a1) - 1 - i] = a1[i] - '0';	
	}
    //同理可得
	for(int i = 0; i < strlen(b1); i++)
	{
		b[strlen(b1) - 1 - i] = b1[i] - '0';	
	}
	//核心代码 
	for(int i = 0; i < max(strlen(a1), strlen(b1)); i++)
	{ 
		result[i] += (a[i] + b[i]); 	//按位相加,先将两位相加,后续在处理进位和取余。注意是+=,因为之前可能有进位的情况发生
		result[i + 1] = result[i] / 10; //进位,将刚刚相加的result[i]的十位存储进来,前面数组是0,用=即可
		result[i] %= 10; 				//本位mod10,一个数组位仅可存一位数,进位已处理完毕,所以对10取余即可
	}
	//看看加完之后的结果用不用进位
	int add = 0; 
	if(result[max(strlen(a1), strlen(b1))] != 0)
	{
		add = 1;//原来的数位最大可能没有相加后的大,要确保多的位数也要输出
	}
	//倒序输出 
	for(int i = max(strlen(a1), strlen(b1)) + add - 1; i >= 0; i--)//数组是从0开始存的,所以需要-1
	{
		cout << result[i];
	}
	return 0;
}

2.高精度减法

1. 原理:

同加法相似,同样需要倒叙存储,顺叙相加,区别在于需要判断是否为负数。

2. 思路:

  1. 定义存储数组。
  2. 被减数和减数确认。由于减法可能出现负数。
  3. 读入数据到数组中。注意:保证被减数大于减数;倒序存放,也就是个位放在数组下标为 0 的地方。
  4. 从个位开始模拟竖式减法的过程,完成整个减法。
  5. 删除前导 0 。所谓前导零,就是出现类似这样数据 01234,这个 0 实际是不需要的。
  6. 输出减法的结果。倒序输出减法的结果数组 C,因为我们的个位是存储在下标为 0 的地方。

3. 技术细节说明:

1. 被减数和减数确认

由于减法可能出现负数,如 3-5=-2,我们在计算的时候,实际是使用 5-3=2,最后在结果前面添加负号。如果出现被减数小于减数的情况,要将两者颠倒。

cin >> s1 >> s2;
int lena = strlen(s1);//获取字符串长度
int lenb = strlen(s2);
//以下为判断被减数和减数确认,判断最终的结果符号
if ((lena < lenb) || (lena == lenb) && strcmp(s1, s2) < 0)//如果被减数小于减数或长度相等时被减数小于减数时,就需要输出"-"负号
{
    printf("-");
    //交换数据
    strcpy(temp, s1);//将s1的值传给temp
    strcpy(s1, s2);
    strcpy(s2, temp);
    //更新长度数据
    lena = strlen(s1);
    lenb = strlen(s2);
}
补充:

strcmp是判断s1与s2在ASCII码中哪个更大

该函数返回值如下:

如果返回值`小于 0`,则表示 str1 `小于` str2。
如果返回值`大于 0`,则表示 str1 `大于` str2。
如果返回值`等于 0`,则表示 str1 `等于` str2。
2. 读入数据到数组

利用读入字符串的方法读入数据,再倒序写入到对应的数组中。这个部分代码如下:

//将字符串写入到数组A中
for (int i = 0; i < lena; i++)
{
   
    //倒序写入
    a[i] = s1[lena-i-1] - '0';
}
//同理可得
for (int i = 0; i < lenb; i++)
{
   
    b[i] = s2[lenb-i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值