Linux最新机器学习NumPy工具pandas_pd(1),Linux运维程序员月薪20k的涨薪秘籍

为了做好运维面试路上的助攻手,特整理了上百道 【运维技术栈面试题集锦】 ,让你面试不慌心不跳,高薪offer怀里抱!

这次整理的面试题,小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。

本份面试集锦涵盖了

  • 174 道运维工程师面试题
  • 128道k8s面试题
  • 108道shell脚本面试题
  • 200道Linux面试题
  • 51道docker面试题
  • 35道Jenkis面试题
  • 78道MongoDB面试题
  • 17道ansible面试题
  • 60道dubbo面试题
  • 53道kafka面试
  • 18道mysql面试题
  • 40道nginx面试题
  • 77道redis面试题
  • 28道zookeeper

总计 1000+ 道面试题, 内容 又全含金量又高

  • 174道运维工程师面试题

1、什么是运维?

2、在工作中,运维人员经常需要跟运营人员打交道,请问运营人员是做什么工作的?

3、现在给你三百台服务器,你怎么对他们进行管理?

4、简述raid0 raid1raid5二种工作模式的工作原理及特点

5、LVS、Nginx、HAproxy有什么区别?工作中你怎么选择?

6、Squid、Varinsh和Nginx有什么区别,工作中你怎么选择?

7、Tomcat和Resin有什么区别,工作中你怎么选择?

8、什么是中间件?什么是jdk?

9、讲述一下Tomcat8005、8009、8080三个端口的含义?

10、什么叫CDN?

11、什么叫网站灰度发布?

12、简述DNS进行域名解析的过程?

13、RabbitMQ是什么东西?

14、讲一下Keepalived的工作原理?

15、讲述一下LVS三种模式的工作过程?

16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟?

17、如何重置mysql root密码?

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

然后你就可以设置一些参数来显示其他的东西。

df2 = pd.DataFrame({‘A’: 1,

                                  ‘B’ : pd.Timestamp(‘20130102’),

                                  ‘C’: pd.Series(1,index=list(range(4)),dtype=‘float32’),

                                  ‘D’:np.array([3]*4,dtype=‘int32’)

                                  ‘E’ :pd.Categorical(“test”,"train”,”test”,”train”]),

                                  ‘F’ :’foo’ })

df2

通过标签来进行数据提取

Operating with objects that have different dimensionality and need alignment.In addition, pandas automatically broadcasts along the specified dimension.

s = pd.Series([1,3,5,np,nan,6,8], index=dates),shift(2)

s

2013-01-01 NaN

2013-01-02 NaN

2013-01-03 1.0

2013-01-04 3.0

2013-01-05 5.0

2013-01-06 NaN

Freq : D,dtype: float64

df.sub(s, axis=‘index’)

在这里插入图片描述
在这里插入图片描述
Grouping

By “group by” we are referring to a process involving >

plitting the data into groups based >

Applying a function to each group independently

Comblining the result into a data structure

df = pd.DataFrame([‘A’ : [‘foo’, ‘bar’, ‘foo’, ‘bar’,

                                        ‘foo’, ‘bar’, ‘foo’, ‘foo’],

                               ‘B’ : [‘one’, ‘oner’, ‘two’, ‘three’,  

                                        ‘two’, ‘two’, ‘one’, ‘three’],

                               ‘C’ :  np.random.randn(8),

                               ‘D’ :  np.random.randn(8),

df

在这里插入图片描述

Categoricals

Since version 0.15, pandas can include categorical data in a DataFrame.

df = pd.DataFrame(“id”:[1,2,3,4,5,6],”raw_grade”:[‘a’, ‘b’, ‘b’, ’a’, ’a’, ‘e’])

Grouping

By “group by” we are referring to a process involving >

plitting the data into groups based >

Applying a function to each group independently

Comblining the result into a data structure

df = pd.DataFrame([‘A’ : [‘foo’, ‘bar’, ‘foo’, ‘bar’,

                                        ‘foo’, ‘bar’, ‘foo’, ‘foo’],

                               ‘B’ : [‘one’, ‘oner’, ‘two’, ‘three’,  

                                        ‘two’, ‘two’, ‘one’, ‘three’],

                               ‘C’ :  np.random.randn(8),

                               ‘D’ :  np.random.randn(8),

df

在这里插入图片描述

Categoricals

Since version 0.15, pandas can include categorical data in a DataFrame.

df = pd.DataFrame(“id”:[1,2,3,4,5,6],”raw_grade”:[‘a’, ‘b’, ‘b’, ’a’, ’a’, ‘e’])

在这里插入图片描述

Convert the raw grades to a categorical data type.

df[“grade”] = df[“raw_grade”].astype(“category”)

df[“grade”]

Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace)

df[“grade”].cat.categories = [“very good”, “good”,”very bad”]

Reorder the categories and simultaneously add the missing categories (methods under Series.cat return a new Series per default ).

df[“grade”] = df[“grade”.cat.set_categories([“very good”, “bad”,”medium”,“good”,”very bad”])

df[“grade”]

Grouping by a categorical column shows also empty categories.

df.groupby(“grade”).size()

grade

very bad 1

bad 0

medium 0

最全的Linux教程,Linux从入门到精通

======================

  1. linux从入门到精通(第2版)

  2. Linux系统移植

  3. Linux驱动开发入门与实战

  4. LINUX 系统移植 第2版

  5. Linux开源网络全栈详解 从DPDK到OpenFlow

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

第一份《Linux从入门到精通》466页

====================

内容简介

====

本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。

华为18级工程师呕心沥血撰写3000页Linux学习笔记教程

本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。

需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以点击这里获取!

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值