====================================================================
1.凸多边形的三角剖分是将凸多边形分割成互不相交的三角
形的弦的集合。
2.最优三角剖分中诸三角形上权值和:指的是将多边形划分成多个三角形
其所有的三角形的周长和最小
3.和矩阵连相乘的思路比较:凸三角形的剖分是通过一个三角形将多边形划分成不同的两部分和一个三角形。
联想矩阵链的递推方程:将其划分成两个不同的子链+这两个自链所构成的矩阵乘法次数
相同点:两种思路一致,
不同点:矩阵连计算次数是 pi-1 * pK* pj
多变形是 三边之和
4.关于递推方程:t[i][j] = t[i][k] + t[k+1][j] + w(i-1,k,j);
这里需要说明的是t[i][j]即表示的是多边形的剖分最小权值和(所有三角形的)
比如t[1][6] = t[1][1] + t[2][6] + w(0,1,6), (7个顶点)
通过点0,1,6将多边形剖分成三部分
其中t[1][1] = 0(三角剖分中 只有一条边的是不可以 被剖分成 多边形的 故其权值和为0)
t[2][6] 表示的是剩下的多变形,然后再求取它的最小值
通过这样的分析:我们可以得知 t[2][6],也就相当于矩阵连相乘问题中的
子链,那么我就还是可以通过建网格来存储每个多边形的最小权值和
来进行求解
5.本题题解:
通过上述分析我们可以得出:
求取凸多边形最优三角剖分 = t[1][n - 1];
6:这里有一张图是 将 矩阵链中的矩阵映射在凸多变形的边上,方便兄弟们更容易理解算法